Warianty tytułu
Badania i opis teoretyczny chaotycznego charaktery wyładowania w kablach XLPE
Języki publikacji
Abstrakty
The electrical tree propagation experiments were performed under high voltages with a frequency of 50Hz and amplitudes ranging from 12kV to 21kV at room temperature by utilizing an actual XLPE cable as the test sample, where the concentration of electrical field was simulated by a metal needle tip. The chaotic theory was introduced to analyze the PD magnitude series during the propagation process of electrical tree. Experimental results show that deterministic chaos exists in the propagation of electrical tree in XLPE cables, and the largest Lyapunov exponent and correlation of the strange attractors increase with the decrease of electrical tree fractal dimension. The results may provide a new approach for online diagnosis of electrical tree morphology.
rzedstawiono wynika badania wyładowania w kablu XPLE przy częstotliwości 50 Hz i napięciu 12 – 21 kV. Stwierdzono chaotyczny charakter drzewienia elektrycznego. Zaproponowano opis teoretyczny umożliwiający łatwe rozpoznanie typu wyładowania.
Czasopismo
Rocznik
Tom
Strony
213-217
Opis fizyczny
Bibliogr. 19 poz., schem.
Bibliografia
- [1] Cao L., Zanwar A., Grzybowski S., Electrical aging phenomena of medium voltage EPR cable energized by ac voltage with switching impulses superimposed, ETTS (2011), 353-356
- [2] Kaneiwa H., Suzuoki Y., Mi zutani T., Partial Discharge Characteristics and Tree inception in Artificial Simulated Tree Channels, IEEE Trans. Diel. Electr. Insul., 7 (2000), No. 6, 843-848
- [3] Guastavino F., Gerutti B., Tree Growth Monitoring by Means of Digital Partial Discharge Measurements, IEEE Trans. Diel. Electr. Insul., 10 (2003), No. 1, 65-72
- [4] Densley J., Kalicki Z., Nadolny Z., Characteristics of PD Pulses in Electrical Trees and Interfaces in Extruded Cables, IEEE Trans. Diel. Electr. Insul., 8 (2001), No. 1, 48-57
- [5] Montanari G.C., Pike G.E., Aging and Life Models for Insulation Systems based on PD Detection, IEEE Trans. Diel. Electr. Insul., 2 (1995), No. 4, 667-675
- [6] Cavallini A., Montanari G.C., Puletti F., A Fuzzy Logic Algorithm to Detect Electrical Trees in Polymeric Insulation Systems, IEEE Trans. Diel. Electr. Insul., 12 (2005), No. 6, 1134-1144
- [7] Dissado L.A., Understanding Electrical Trees in Solids: From Experiment to Theory, IEEE Trans. Diel. Electr. Insul., 9 (2002), No. 4, 483-497
- [8] Dissado L.A., Deterministic Chaos in Breakdown Does It Occur and What Can It Tell Us?, IEEE Trans. Diel. Electr. Insul., 9 (2002), No. 5, 752-762
- [9] Dissado L.A., Dodd S.J., Champion J.V., Williams P.I., Al ison J.M., Propagation of Electrical Tree Structure in Solid Polymeric Insulation, IEEE Trans. Diel. Electr. Insul., 4 (2002), No. 3, 259-279
- [10] Jayoon K., Jeonseon L., Yunsok L., Wanki P., Comparison of Diagnostic Method for Pattern Analysis Due to Artificial Defects Introduced at the Interface in XLPE Cable Joint Using Laboratory Model, IEEE Power. Eng. Soc. Trans. Distrib. Conf., (2002), 1426-1431
- [11] Schouten J.C., Takens F., van den Bleek C.M., Estimation of the Dimension of a Noisy Attractor, Phys. Rev. E, 50 (1994), No. 3, 1851-1861
- [12] Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.S., The analysis of observed chaotic data in physical systems, Rev. Mod. Phys., 65 (1993), No. 4, 1331-1392
- [13] Rosenstein M.T., Collins J.J., Luca C.J.D., A Practical Method for calculating largest Lyapunov exponents from small data sets, Phys. D: Nonlinear Phenomena, 65 (1993), No. 1-2, 117-134
- [14] Grassberger P., Procaccia I., Characterization of Strage Attractors, Phys. Rev. Lett., 50 (1983), No. 5, 346-349
- [15] Dodd S.J., Dissado L.A., Champion J.V., Alison J.M., Evidence for Deterministic Chaos as the Origin of Electrical Tree Breakdown Structures in Polymeric Insulation, Phys. Rev. B, 52 (1995), No. 24, 16985-16988
- [16] Fraser A.M., Swinney H.L., Independent Coordinates for Strange Attractors from Mutual Information, Phys. Rev. A, 33 (1986), No. 2, 1134-1140
- [17] Cao L.Y., Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series, Physica D, 110 (1997), No. 1-2, 43-50
- [18] Kudo K., Fractal Analysis of Electrical Trees, IEEE Trans. Diel. Electr. Insul., 5 (1998), No. 5, 713-727
- [19] Vaughan A.S., Hosier I.L., Dodd S.J., Sutton S.J., On the Structure and Chemistry of Electrical Trees in Polyethylene, J. Phys. D: Appl. Phys., 39 (2006), No. 5, 962-978
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOK-0037-0048