Warianty tytułu
Podstawy teorii mocy chwilowej p-q oraz jej zastosowanie w sterowaniu przekształtników kluczujących, włączonych w mikro-sieciach
Języki publikacji
Abstrakty
The main objective of this tutorial is to present the basic concepts on the instantaneous p-q Theory and then show its applicability for controlling switching converters connected in a micro-grid. These converters can be used for connecting renewable energy sources (solar, wind, and others) to the micro-grids or for harmonic, reactive power or unbalance compensation, and even for voltage regulation. The emphasis is given on the compensation characteristics derived from the p-q Theory, and simulation results of test cases are shown. Special attention is put on the oscillating component of the instantaneous real power, as it may produce torque oscillations or frequency variations in weak systems (micro-grids) generators. This oscillating component, as defined in the p-q Theory, gives the amount of oscillating energy between the source and the load, and its compensation through a switching compensator must have an energy storage element to exchange it with the load. With the p-q Theory this energy storage element can be easily calculated as a function of the average component of the instantaneous real power, which depends on the observation period.
Głównym celem artykułu jest przedstawienie podstaw teorii mocy chwilowej p-q oraz jej zastosowanie w sterowaniu przekształtników kluczujących, włączonych w mikro-sieciach. Przekształtniki te są używane w celu połączenia odnawialnych źródeł energii (słonecznej, wiatru oraz innych) z mikro-sieciami lub w celu kompensacji harmonicznych i mocy biernej, kompensacji niezrównoważenia odbiorników, a nawet w celu regulacji napięcia. Nacisk w artykule położony jest na cechy kompensatorów wynikające z teorii p-q , a także przedstawione są w artykule wyniki modelowania sytuacji testowych. Szczególna uwaga poświęcona jest oscylującemu składnikowi mocy czynnej, gdyż w słabych systemach (mikrosieciach) może on powodować oscylacje momentu mechanicznego generatorów lub zmiany częstotliwości. Ten oscylujący składnik, zdefiniowany w teorii p-q , określa ilość energii oscylującej między źródłem i odbiornikiem. Jego kompensacja za pomocą kompensatora kluczującego wymaga zasobnika energii, umożliwiającego wymianę energii między kompensatorem i odbiornikiem. W artykule pokazano, że pojemność zasobnika energii może być łatwo obliczana za pomocą teorii p-q jako funkcja średniej wartości rzeczywistej mocy chwilowej, zależnej od okresu obserwacji.
Czasopismo
Rocznik
Tom
Strony
1-10
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
autor
autor
autor
autor
autor
- COPPE/UFRJ, Rio de Janeiro, Brazil
Bibliografia
- [1] W. V. Lyon, “Reactive power and unbalanced circuits,” Electr. World, vol. 75, no. 25, pp. 1417–1420, 1920.
- [2] F. Buchholz, “Die Drehstrom-Scheinleistung bei ungleichmäßiger Belastung der drei Zweige,” Licht Kraft, Zeitschrift elekt. Energie-Nutzung, no. 2, pp. 9–11, Jan. 1922.
- [3] C. I. Budeanu, Puissances Reactives et Fictives. Bucharest, Romania: Instytut Romania de l’Energie, 1927, Pub. no. 2.
- [4] H. Akagi, Y. Kanazawa, A. Nabae, "Generalized Theory of the Instantaneous Reactive Power in Three-Phase Circuits," in Proc. IPEC-Tokyo'93 Int. Conf. Power Electronics, pp. 1375-1386, Tokyo, 1983.
- [5] H. Akagi, E. H. Watanabe, M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, New Jersey: IEEE Press / Wiley-Interscience, 2007, ISBN: 978-0-470-10761-4. http://www.wiley.com/WileyCDA/WileyTitle/productCd-047011892X.html
- [6] E. H. Watanabe, H. Akagi and M. Aredes, “Instantaneous p-q Power Theory for Compensating Nonsinusoidal Systems,” International School on Nonsinusoidal Current Compensation (ISNCC 2008), Lagow, Poland, June, 2008.
- [7] L. F. C. Monteiro, J. L. Afonso, J. G. Pinto, E. H. Watanabe, M. Aredes and H. Akagi, “Compensation Algorithm Based on the p-q and CPC Theories for Switching Compensators in Micro-Grids,” Brazilian Conference on Power Electronics (COBEP 2009), Bonito – MS, Brazil, September, 2009.
- [8] H. Akagi, Y. Kanazawa, A. Nabae, "Instantaneous Reactive Power Compensator Comprising Switching Devices Without Energy Storage Components," IEEE Transactions on Industry Applications, vol. IA-20, no. 3, pp. 625-630, 1984.
- [9] H. Akagi, A. Nabae and S. Atoh, “Control Strategy of Active Power Filter Using Multiple Voltage Source PWM Converters,” IEEE Trans. Ind. Appl., vol. IA-22, no 3, 1986.
- [10] E. H. Watanabe and M. Aredes, “Compensation of Non-Periodic Currents Using the Instantaneous Power Theory,” IEEE PES Summer Meeting, Seattle, July 2000.
- [11] E. H. Watanabe, R. M. Stephan, M. Aredes, "New Concepts of Instantaneous Active and Reactive Powers in Electrical Systems with Generic Loads," IEEE Transactions on Power Delivery, vol. 8, no. 2, pp. 697-703, April 1993.
- [12] M. Aredes, E. H. Watanabe, "New Control Algorithms for Series and Shunt Three-Phase Four-Wire Active Power Filters," IEEE Transactions on Power Delivery, vol. 10, no. 3, pp. 1649-1656, July 1995.
- [13] M. Aredes, “Active Power Line Conditioners,” Ph.D. Thesis, Technische Universität Berlin, Berlin, 1996.
- [14] J. L. Afonso, M. J. S. Freitas, J. S. Martins, “p-q Theory Power Components Calculations,” 2003 IEEE International Symposium on Industrial Electronics, 2003, vol. 1, pp. 385-390, June 2003, website: http://repositorium.sdum.uminho.pt/handle/1822/1864.
- [15] J. L. Afonso, C. Couto, J. Martins, “Active Filters with Control Based on the p-q Theory”, IEEE Industrial Electronics Society Newsletter, vol. 47, nº 3, Sept. 2000, pp. 5-10. http://repositorium.sdum.uminho.pt/handle/1822/1921
- [16] P. G. Barbosa, L. G. B. Rolim, E. H. Watanabe, R. Hanitsch, “Control Strategy for Grid-Connected DC-AC with Load Power Factor Correction,” IEE Proc. Generation, Transmission and Distribution, vol. 145, pp. 487-491, No. 5, 1998.
- [17] M. Depenbrock, “The FBD-Method, a Generally Applicable Tool for Analysing Power Relations,” IEEE Transactions on Power Systems, vol. 8, no. 2, pp. 381-387, May 1993.
- [18] P. Tenti, E. Tedeschi, P. Mattavelli, “Cooperative Operation of Active Power Filters by Instantaneous Complex Power Control,” 7th International Conference on Power Electronics and Drive Systems, 2007 (PEDS '07), pp. 555-561, November 2007.
- [19] L. S. Czarnecki, “On some misinterpretations of the instantaneous reactive power p – q theory,” IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 828–836, May 2004.
- [20] L. S. Czarnecki, “Instantaneous reactive power p – q theory and power properties of three-phase systems,” IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 362–367, January 2006.
- [21] H. S. Kim, H. Akagi, “The instantaneous power theory on the rotating p-q-r reference frames,” in Proc. IEEE/PEDS 1999 Conf., Hong Kong, Jul., pp. 422–427.
- [22] M. Depenbrock, V. Staudt, H. Wrede, “Concerning instantaneous power compensation in three-phase systems by using p–q–r theory,” IEEE Transactions on Power Electronics, vol. 19, no. 4, pp. 1151–1152, Jul. 2004.
- [23] M. Aredes, H. Akagi, E. H. Watanabe, E. V. Salgado, L. F. Encarnação, “Comparisons Between the p–q and p–q–r Theories in Three-Phase Four-Wire Systems,” IEEE Transactions on Power Electronics, , vol. 24, no. 4, pp. 924-933, April 2009.
- [24] R. I. Bojoi, G. Griva, V. Bostan, M. Guerreiro, F. Farina, F. Profumo, “Current Control Strategy for Power Conditioners Using Sinusoidal Signal Integrators in Synchronous Reference Frame,” IEEE Transactions on Power Electronics, vol. 20, no. 6, pp. 1402–1412, November 2005.
- [25] I. Van der Hoven, “Power Spectrum of Horizontal Wind Speed in the Frequency Range from 0.0007 to 900 Cycles per Hour,” Journal of Meteorology, vol. 14, pp. 160-164, April 1957.
- [26] T. Goya et al., Torsional Torque Suppression of Decentralized Generators Based on H∞ Control Theory,” International conference on Power System Transient (IPST’2009), Kyoto, 2-6 June 2009.
- [27] G. O. Suvire, “Mitigation of Problems Produced by Wind Generators in Weak Systems,” Ph.D. Thesis, San Juan National University, Argentina, 2009. (in Spanish).
- [28] S. Fryze, “Wirk-, Blind- und Scheinleistung in elektrischen Stromkreisen mit nicht-sinusförmigem Verlauf von Strom und Spannung,” ETZ-Arch. Elektrotech., vol. 53, pp. 596–599, 625–627, 700–702, 1932.
- [29] L. Malesani, L. Rosseto, P. Tenti, “Active Filter for Reactive Power and Harmonics Compensation,” Power Electronics Specialist Conference, PESC ’86, pp. 321 – 330.
- [30] Y. Xu, L. M. Tolbert, J. N. Chiasson, J. B. Campbell, F. Z. Peng, “A generalised instantaneous non-active power theory for STATCOM,” IET Electr. Power Appl., 2007, 1, (6), pp. 853–861.
- [31] Y. Xu, L. M. Tolbert, F. Z. Peng, J. N. Chiasson, J. Chen, “Compensation-based non-active power definition”, IEEE Power Electronics Letters, 2003, 1, (2), pp. 45–50.
- [32] F. P. Marafão, S. M. Deckmann, J. A. Pomilio, R. Q. Machado, "Control Strategies to Improve Power Quality," COBEP 2001 - The 6th Brazilian Power Electronics Conf., Florianópolis, pp. 378-383, November 2001.
- [33] M. Aredes, L. F. C. Monteiro, “Compensation algorithms based on instantaneous powers defined in the phase mode and in the αβ0 reference frame,” COBEP 2003 – Brazilian Power Electronics Conference, Fortaleza, Brazil, pp. 344-349, September 2003.
- [34] L. S. Czarnecki, “Current’s Physical Components (CPC) in circuits with Nonsinusoidal voltages and currents. Part 2: Three-phase linear circuits,” Electrical Power Quality and Utilization Journal, vol. X, no. 1, pp.1 – 14, 2006.
- [35] L. S. Czarnecki, “Orthogonal decomposition of the currents in a 3-phase nonlinear asymmetrical circuit with a nonsinusoidal voltage source,” IEEE Transactions on Instrumentation and Measurement, vol. 37, no. 1, pp. 30 – 34, March 1988.
- [36] L. S. Czarnecki, “Reactive and Unbalanced Currents Compensation in Three-Phase Asymmetrical Circuits under Nonsinusoidal Conditions,” IEEE Transactions on Instrumentation and Measurement, vol. 38, no. 3, pp. 754–759, June 1989.
- [37] L. S. Czarnecki, “Scattered and Reactive Current, Voltage, and Power in Circuits with Nonsinusoidal Waveforms and Their Compensation,” IEEE Transactions on Instrumentation and Measurement, vol. 40, no. 3, pp. 563 – 567, June 1991.
- [38] L. S. Czarnecki, “CPC power theory as control algorithm of switching compensators,” Electrical Power Quality and Utilization, 9th International Conference, Barcelona 9 – 11, October 2007.
- [39] E.H. Watanabe, M. Aredes and H. Akagi, “The p-q Theory for Active Filter Control: Some Problems and Solutions”, Revista Brasileira de Controle e Automação (SBA), Campinas/SP, Vol. 15, nº:01, pp. 78-84, Jan./Mar. 2004.
- [40] H. Akagi and L. Maharjan, “A Battery Energy Storage System Based on a Multilevel Cascade PWM Converter,” COBEP2009, Special Session, Bonito, September 2009.
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOK-0031-0001