Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | R. 88, nr 7b | 60-64
Tytuł artykułu

Switching arc simulation

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Symulacja łuku łączeniowego
Języki publikacji
EN
Abstrakty
EN
This paper is a general review of research studies with computer simulations of electric arc in electric circuit breakers, taking into account the magnetohydrodynamic model of electric arc and there are described the formation and the decay of discharge channels in alternating current arcs of Imax = 500 A in atmospheric pressure and in a model system, designed with the ANSYS-Fluent software. Diagrams of mass velocity, temperature and current density distributions are presented. An ultra-fast digital camera (20 000 frames/s) was used in the experimental studies.
PL
W artykule przedstawiono przegląd badań dotyczących komputerowej symulacji łuku łączeniowego w wyłącznikach, przy wykorzystaniu magnetohydrodynamicznego opisu modelu łuku. Opisano też powstawanie nowych i zanikania starych kanałów wyładowczych w łukach prądu przemiennego Imax = 500 A, palących się w powietrzu (ciśnienie atmosferyczne), w czasie symulacji palenia się łuku. Podano wykresy rozkładów prędkości masy, temperatury i gęstości prądu. W eksperymentach zastosowano ultra-szybką kamerę filmową (20 000 k/s).
Słowa kluczowe
Wydawca

Rocznik
Strony
60-64
Opis fizyczny
Bibliogr. 53 poz., il., schem., wykr.
Twórcy
  • Politechnika Łódzka, Katedra Aparatów Elektrycznych, Stefanowskiego 18/22, 92-518 Łódź, wtarczyn@p.lodz.pl
Bibliografia
  • [1] Gu S., He J., Zhang B., Xu G. and Han S., Movement simulation of long electric arc along the surface of insulator string in free air, IEEE Trans. on Magnetics, Vol. 42 (2006), no. 4, 1359-62
  • [2] Tanaka S. and Sunabe K. Study on simple simulation model for dc free arc behavior in long gap, Proc. 14th Int. Conf. Gas Discharges and Their Applications, Vol. 1, 119-22
  • [3] Tarczynski W., Kinetics of Low-Voltage Switching Arc, Scientific Journals of Technical University of Lodz, (1995) Dissertations No.746
  • [4] Tarczynski W., Electrodynamics of Electrical Apparatus. Publication Series Advances in High-Voltage Technique, The Committee on Electrical Engineering of the Polish, Academy of Sciences, Technical University of Lodz Publishers, Lodz, 2007
  • [5] Daszkiewicz T., Analysis of Dynamic States of Discharge Channels Between Plasma Jets in AC Electric Arc, Doctor’s thesis, Department of Electrical Apparatus, Technical University of Lodz, 2010
  • [6] Chevrier P., Barrault M. and Fievet C., Hydrodynamic model for electrical arc modeling, IEEE Trans. on Power Delivery, Vol. 11 (1996) no. 4, 1824-29
  • [7] Chevrier P., Barrault M. and Fievet C., Maftoul J. and Millon Fremillon J., Industrial applications of high-, medium- and lowvoltage arc modeling. J. Phys. D: Appl. Phys., 30 (1997), 1346-55
  • [8] Chevrier P., Maftoul J. and Rachard H., Hydrodynamic model for circuit breakers design, 12th Int. Conf. on Gas Discharges and Appl. (1997), I38 - I41
  • [9] Domejean E., Chevrier P., Fievet C. and Petit P., Arc-wall interaction modelling in a low-voltage circuit breaker, J. Phys. D: Appl. Phys., 30 (1997), 2132-42
  • [10] Fievety C., Barrault M., Petit P., Chevrier P., Fleurier C. and Andre V., Optical diagnostics and numerical modelling of arc re-strikes in low-voltage circuit breakers, J. Phys. D: Appl. Phys., 30 (1997), 2991-99
  • [11] Verite J. C., Barrault M., Boucher T., Chevrier P., Comte A. and Fievert C., Coupling between physical arc modeling and circuit modeling around zero current phase, 12th Int. Conf. on Gas Discharges and Appl., (1997), I46 - I49
  • [12] Rachard H., Chevrier P., Henry D. and Jeandel D., Numerical study of coupled electromagnetic and aerothermodynamic phenomena in a circuit breaker electric arc, Int. Journal of Heat and Mass Transfer, 42 (1999), 1723-34
  • [13] Battandier J. Y., Delahaye R., Wild J., Devouassoux T., Perrot M., and Ponthenier J. L., 2D arc modelling of a double breaking circuit breaker. Comparison with measurement and optimization. 15th Int. Conf. on Gas Discharges and Appl., Toulouse, France, (2004) 163-66
  • [14] Wild J., Battandier J. Y. and Fievet C., Magneto hydrodynamic simulation coupled with network in low voltage circuit breakers, IEEE 2004 Int. Conf. on Power System Technology, Singapore: 1954-59
  • [15] Lindmayer M., Simulation of switching devices based on the general transport equation, Int. Conf. on Electrical Contacts Swiss Federal Institute of Technology, Switzerland (2002), (7pp)
  • [16] Lindmayer M., Marzahn E., Mutzke A. and Springstubbe M., Low-voltage switching arcs – experiments and modeling. 15th Symposium on Physics of Switching Arc, Czech Republic, (2003) (16pp)
  • [17] Lindmayer M., Complete simulation of moving arcs in lowvoltage switchgear, 14th Int. Conf. On Gas Discharges and their Applications, The University of Liverpool, England, (2002), (7pp)
  • [18] Karetta F. and Lindmayer M., Simulation of the gasdynamic and electromagnetic processes in low voltage switching arcs, Proc. of the Forty-Second IEEE Holm Conf. on Electrical Contacts Joint with the 18th Int. Con. on Electrical Contacts, (1996), 35 – 44
  • [19] Karetta F. and Lindmayer M., Simulation of arc motion under conditions of low voltage switchgear, 12th Int. Conf. on Gas Discharges and Their Applications, Greifswald, (1997), I135-38
  • [20] Karetta F. and Lindmayer M., Simulation of the gasdynamic and electromagnetic processes in low voltage switching arcs, IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part A, Vol. 21 (1998), no. 1, 96 – 103
  • [21] Karetta F. and Lindmayer M., Simulation of arc motion between divergent arc runners, 19th Int. Conf. on Electrical Contacts, (1998), pp. 361-67
  • [22] Swierczynski B., Gonzalez J. J. and Gleizes A., 3D model of arc in a simplified configuration of LV circuit breaker, 26th Int. Conf. Phen. Ionized Gases, Greifswald – Germany, (2003), 113-14
  • [23] Swierczynski B., Gonzalez J. J., Teulet P., Freton P. and Gleizes A., Advances in low - voltage circuit breaker modeling, J. Phys. D: Appl. Phys. 37 (2004), 595-609
  • [24] Daube T., Stammberger H Anheuser M. and Dehning C., 3D simulation of a low voltage switching arc based on MHD equations. 9th Int. Conf. Switching Arc Phenomena, Lodz, Poland, (2001) 168–73
  • [25] Anheuser M., Stammberger H., Daube T. and Dehning C., Arc simulations in realistic low-voltage arcing chambers, 15th Symp. on Physics of Switching Arc, Nové Město na Moravě, Czech Republic, (2003), 215-21
  • [26] Rümpler Ch., Reichert F., Stammberger H., Terhoeven P. and Berger F., Numerical study of the electrical arc movement supported by experiments. ICEC (2006), 22-27
  • [27] Reichert F., Berger F., Rumpler Ch., Stammberger H. and Terhoven P., Experimental studies of the arc behaviour in low voltage arc rail arrangements supporting numerical simulations, IEEE Holm Conf. on Electrical Contacts, (2006), 34-39
  • [28] Baudoin F., Gonzalez J. J. and Checchin P., Study of the curvature of the electrical arc in low voltage breaking devices: influence of the external magnetic field, J. Phys. D: Appl. Phys., 38 (2005), 3778-91
  • [29] Baudoin F., Cressault Y. and Checchin P., 3D modeling of an electrical arc in low voltage breaking devices circuit breaker, contactor, switch, switch disconnector, 15th Int. Conf. on Gas Discharges and their Applications, Toulouse, France, (2004), 167-70
  • [30] Blais A., Proulx P. and Boulos M. I., Three-dimensional numerical modeling of a magnetically deflected dc transferred arc in argon, J. Phys. D: Appl. Phys., 36 (2003), 488-96
  • [31] Xue S., Proulx P., and Boulos M. I., Extended-field electromagnetic model for inductively coupled plasma, J. Phys. D: Appl. Phys., 34 (2001), 1897-906
  • [32] Li X., Chen D., Wang Q. and Li Z., Simulation of the effects of several factors on arc plasma behavior in low voltage circuit breaker, Plasma Sci. Technol., Vol. 7,( 2005) No. 5, 3069-72
  • [33] Li X., Chen D., Dai R. and Geng Y., Study of the influence of arc ignition position on arc motion in low-voltage circuit breaker, IEEE Trans. on Plasma Science, Vol. 35 (2007), No. 2, 491–97
  • [34] Li X., Chen D., Wu Y. and Dai R. A., A comparison of the effects of different mixture plasma properties on arc motion, J. Phys. D: Appl. Phys., 40 (2007), 6982 – 88
  • [35] Li X., Chen D., Li R., Wu Y. and Niu C., Electrode evaporation effects on air arc behavior, Plasma Sci. Technol., Vol. 10 (2008), No. 3: 323 – 27
  • [36] Yang Q., Rong M., Murphy A. B. and Wu Y., The influence of medium on low-voltage circuit breaker arcs, Plasma Sci. Technol., Vol 18 (2006), No. 6, 680 – 84
  • [37] Wu Y., Rong M., Sun Z., Wang X., Yang. and Li X., Numerical analysis of arc plasma behaviour during contact opening process in low-voltage switching device, J. Phys. D: Appl. Phys., 40 (2007), 795-802
  • [38] Wu Y., Rong M., Sun Z., Wang X., Li J. and Wang J., Simulation of low-voltage arc plasma during contact opening progress, Plasma Sci. Technol., Vol. 9 (2007), No. 6, 649-52
  • [39] Ma Q., Rong M., Wu Y., Xu T. and Sun Z., Influence of copper vapor on low-voltage circuit breaker arcs during stationary and moving states, Plasma Sci. Technol., Vol. 10 (2008), No. 3, 313-18
  • [40] Ma Q., Rong M., Wu Y., Xu T. and Sun Z., Simulation and experimental study of arc column expansion after ignition in low-voltage circuit breakers, Plasma Sci. Technol., Vol. 10 (2008), No. 4, 438-45
  • [41] Chen D., Dai R., and Li X. 2009 Effect of different vent configurations on the interruption performance of arc chamber”, IEICE 2009, 153-56
  • [42] Chen D., Li X., Li Z. and Ji L., Simulation of pressure rise in arc quenching chamber of molded case circuit breaker during its interruption process. IEICE (2009), 105-08
  • [43] Ji L., Chen D., Liu Y. and Li X., Simulation of the interruption process of MCCB with double repulsive contacts. IEICE-EMD, Vol. 108 (2008), No. 296, 65–8
  • [44] Li X., Tusongjiang K., Chen D., Sun H., Xie E., Simulation of Arc Motion in Air Switching Devices Taking Ferromagnetic Material into Account. Plasma Sci. Technol., Vol. 11 (2009), No. 2, 245-49
  • [45] Yang F., Rong M., Wu Y., Murphy A.B., Pei J, Wang L., Liu Z., Liu Y., Numerical Analysis of the influence of splitter-plate erosion on an air arc in the quenching chamber of a lowvoltage circuit breaker, J. Phys. D: Appl. Phys., 43 (2010), 1-12
  • [46] Wu J., Wang X., Ma Z., Rong M., Jan J., Numerical Simulation of Gas Flow During Arcing Process for 252 kV Puffer Circuit Breakers, Plasma Sci. Technol., Vol. 13 (2011), No. 6, 730-34
  • [47] Zhang J., Jia S., Li X., Shi Z., Wang L., Influence of Shock Wave on Turbulence in SF6 Puffer Circuit Breaker, Plasma Sci. Technol. Vol. 12 (2010), No. 1, 76- 80
  • [48] Zhang L, Jia S, Wang L, Shi Z., Simulation of Vacuum Arc Characteristic Under Four Kind of Axial Magnetic Fields and Comparison with Experimental Results. Plasma Sci. Technol., Vol. 13 (2011), No. 4, 462-69
  • [49] Zhang P., Zhang G., Geng Y., Zhang Y., Wu J., Yang B., The Optime Structural Design of Low-Voltage Arc Chamber Based on Simulation and Analysis of flow field, 1st Int. Conf. on Electric Power Equipment – Switching Technology, Xi’an – China, (2011), 440-43
  • [50] Bini R., Galletti B., Schwinne M., Schläpfer Th. W., CFD in Circuit Breaker Research & Development. 1st Int. Conf. on Electric Power Equipment – Switching Technology, Xi’an – China, (2011), 375-78
  • [51] Hauser A., Branston D.W., Numerical Simulation of a Moving Arc in 3D, 17th Int. Conf. on Gas Discharges and Appl. (2008), 213-16
  • [52] Tarczynski W., Daszkiewicz T., Dynamics of discharge channel displacement in AC electric arcs. Archives of Electrical Engineering, Vol. 58 (2009), No. 3-4, 127-42
  • [53] Daszkiewicz T., Tarczynski W., Discharge channel displacement simulation in AC arc. Archives of Electrical Engineering, Vol. 59 (2010), (1-2), 35-49
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOH-0068-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.