Warianty tytułu
Odporny układ sterowania typu H[nieskończoność] dla systemu z niepewnymi przełączeniami
Języki publikacji
Abstrakty
This paper considers the problems of dynamic output feedback H[infinity] control for uncertain switched singular system with parametric uncertainties. A switching rule and a switched dynamic output feedback controller are designed to guarantee that the closed-loop system is asymptotically stable with a prescribed H[infinity] disturbance attenuation level [gamma]. Such sufficient conditions are derived via a series of strict linear matrix inequalities (LMIs). Finally, a numerical example is given to illustrate the effectiveness of the proposed method.
W artykule analizuje się problem dynamiki system sterowania H[nieskończoność] dla systemu pojedynczego z niepewnymi przełączeniami. Badano zasady przełączania i dynamikę przełączania gwarantującą stabilną prace systemu. Przedstawiono przykład numeryczny ilustrujący skuteczność proponowanej metody.
Czasopismo
Rocznik
Tom
Strony
34-38
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
autor
autor
autor
- Electronic Information Engineering College, Henan University of Science and Technology, Luoyang, 471003, P.R.China, eaglecloud1974@yahoo.com.cn
Bibliografia
- [1] Sun Z., Ge S. S., Switched Linear Systems, London, England: Springer, 2005.
- [2] Campbell S. L., Rose N. J., A second-order singular linear system arising in electric power systems analysis, Int. J. Systems Sci. 13(1), 1982.
- [3] Dai L., Singular Control Systems, New York, USA: Springer, 1989.
- [4] Lewis F. L., A survey of linear singular systems, Circuits Systems Signal Process, vol. 5, pp. 3-36, 1986.
- [5] Liberzon D., Morse A. S., Basic Problems in Stability and Design of Switched Systems, IEEE Control Systems Magazine, vol. 19, pp. 59-70,1999.
- [6] Shorten R. N., Narendra K. S., Mason O, A Result on Common Quadratic Lyapunov Functions, IEEE Trans on Automatic Control, vol. 48, pp. 618-621, 2003.
- [7] Sun Z., Ge S. S., Analysis and synthesis of switched linear control systems, Automatica, vol. 41, pp. 181-195, 2005.
- [8] Narendra K. S., Balakrishnan J., A common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE Trans. on Automatic Control, vol. 39, pp. 2469-2471, 1994.
- [9] Liberzon D., Hespanha J. P., Morse A. S., Stability of switched systems: a Lie-algebraic condition, Systems & Control Letters, vol. 37, pp. 117-122, 1999.
- [10] Hespanha J. P., Morse A. S., Stability of switched systems with average dwell-time, Proc. of the 38th IEEE Conference on Decision and Control, Phoenix, USA, pp. 2655-2660, 1999.
- [11] Wicks M. A., Peleties P., DeCarlo R. A., Switched contro ller design for the quadratic stabilization of a pair of unstable linear systems, European Journal of Control, vol. 4, pp. 140-147, 1998.
- [12] Zhai G., Xu X., Imae J., Kobayashi T., Qualitative Analysis of Switched Discrete-Time Descriptor Systems, International Journal of Control, Automation, and Systems, vol. 7, pp. 512-519, 2009.
- [13] Xie G. M., Wang L., Stability and Stabilization of Switched Descriptor Systems under Arbitrary Switching , IEE International Conference on Systems, Man and Cybernetics, The Hague, Netherlands, vol. 1, pp. 779-783, 2004.
- [14] Gahinet P., Apkarian P., An LMI-based Parametrization of All Controllers with Applications, Proc. of the 32nd Conference on Decision and Control, San Antonlo, Texas, vol.1, pp. 656-661, 1993.
- [15] Gahinet P., Apkarian P., A Linear Matrix Inequality Approach to H∞Control, Int. J. of Robust and Nonlinear Control, vol. 4, pp. 421-448, 1994.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOH-0062-0009