Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | z. 67 | 67-83
Tytuł artykułu

Theoretical interpretation of size effect in fatigue

Warianty tytułu
Konferencja
Summer School Of Fracture Mechanics. Current Research On Fatigue And Fracture/sympozjum (VII ; 18-22.06.2001 ; Opole - Pokrzywna, Poland)
Języki publikacji
EN
Abstrakty
EN
As is well-known, the fatigue strength of materials decreases by increasing the specimen size. Such a decrease can be remarkable when very large structures are considered. An overview of experimental findings and theoretical studies on this phenomenon is presented. Then size effect in fatigue is explained by considering the fractal nature of the reacting cross sections of t structures, that is, the renormalized fatigue strength is represented by a force amplitude acting on I a surface with a fractal dimension lower than 2. This dimensional decrement, which depends on a self-similar weakening of the material ligament, owing to the presence of cracks, defects, voids, etc. (microscopic level), tends to progressively disappear by increasing the structure size (macroscopic level), i.e. the effect of the material microstructure on the fatigue behaviour gradually finishes for relatively large structures (multifractality). Accordingly, two scaling laws for fatigue limit are herein proposed, and some experimental results are examined in order to show how to apply the theoretical approach presented.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
67-83
Opis fizyczny
Bibliogr. 24 poz., tab., wykr.
Twórcy
  • Department of Civil Engineering University of Parma, Italy
autor
  • Department of Civil Engineering University of Parma, Italy
autor
  • Department of Civil Engineering University of Parma, Italy
Bibliografia
  • [1] GRIFFITH A.A., The phenomenon of rupture and flow in solids, Philosophical Trans Royal Soc., London, A221, 1921, pp. 163-198
  • [2] PETERSON R.E., Model testing as applied to strength of materials, Jnl Applied Mechanics 1 (1933) pp. 79-85
  • [3] WEIBULL W., A statistical theory for the strength of materials, Swedish Royal Institute for Engineering Research, Stockholm, 1939
  • [4] BAZANT Z.P., Size effect in blunt fracture: concrete, rock, metal, did Engrg Mech ASCE 110 (1984) pp. 518-535
  • [5] CARPINTERI Al., Scaling laws and renormalization groups for strength and toughness of disordered materials, hit Jid Solids Struct 31 (1994) pp. 291-302
  • [6] CARPINTERI Al., Decrease of apparent tensile and bending strength with specimen size: two different explanations based on fracture mechanics, hit Jnl Solids Struct 25 (1989) pp. 407-429
  • [7] MANDELBROT B.B. The fractal geometry of nature, W.H. Freeman and Com-pany, New York, 1982
  • [8] FALCONER K., Fractal geometry: mathematical foundations and applications, Wiley, Chichester, 1990
  • [9] WILSON K.G., Renormalization group and critical phenomena, Phys Rev B4 (1971) pp.3174-3205
  • [10] BARENBLATT G.I., Similarity, self-similarity and intermediate asymptotics, Con-sultants Bureau, New York, 1979
  • [11] HERRMANN H.J., ROUX S. (Eds), Statistical models for the fracture of disor-dered media. North-Holland, Amsterdam. 1990
  • [12] BARENBLATT G.I., BOTVINA L.R., Incomplete self-similarity of fatigue in the linear range of crack growth, Fatigue Fract Engng Mater Struct 3 (1980) pp. 193-202
  • [13] MANDELBROT B.B., PASSOJA D.E., PAULLAY A.J., Fractal character of fracture surfaces of metals, Nature 308 (1984) pp. 721-722
  • [14] MANDELBROT B.B., Self-affine fractals and fractal dimension, Pliys Scr 32 (1985) pp. 257-260
  • [15] CARPINTERI Al., CHIAIA B., Multifractal scaling laws in the breaking behaviour of disordered materials, Chaos, Solitons & Fractals 8 (1997) pp. 135-150
  • [16] WILLIFORD R.E., Multifractal fracture, Scripta Metallurgica 22 (1988) pp. 1749-1654
  • [17] WILLIFORD R.E., Fractal fatigue, Scripta Metallurgica 24 (1990) pp. 455-460
  • [18] HATANAKA K., SHIMIZU S., NAGAE A., Size effect on rotating bending fatigue in steels, Bulletin of JSME 26 (1983) pp. 1288-1295
  • [19] BAZANT Z.P.. SHELL W.F., Fatigue fracture of high-strength concrete and size effect, A Cl Mater Jnl 90 (1993) pp. 472-478
  • [20] FROST N.E., MARSH K.J., POOK L.P., Metal fatigue, Dover Publications, New York, 1994
  • [21] DRAIGOR D.A., VALCHUK G.I., Size effect in wear and fatigue of steel, Israel Program for Scientific Translations
  • [22] MURAKAMI Y., BERETTA S., Small defects and inhomogeneities in fatigue strength: experiments, models and statistical implications, Extremes 2 (1999) pp. 123-147
  • [23] FINDLEY W.N., An explanation of size effect in fatigue of metals, Jnl Mech Engrg Sci 14 (1972) pp. 424-425
  • [24] JSME Data Book, Fatigue of metals, Japanese Society Mech Engrg, 1982
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOG-0020-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.