Czasopismo
2008
|
R. 84, nr 9
|
135-141
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Dodatnie układy ciągle i dyskretne ułamkowego rzędu - możliwość zastosowania do analizy obwodów elektrycznych
Języki publikacji
Abstrakty
Fractional positive linear continuous-time and discrete-time systems are addressed. The solutions to the state equations of the fractional systems are derived using the Laplace and the Z transforms, respectively. Necessary and sufficient conditions are established for the internal and external positivity of the fractional systems. Some applications of the of the fractional systems theory to electrical circuits are given.
W artykule są rozpatrywane dodatnie układy ciągle i dyskretne ułamkowego rzędu. Korzystając z przekształcenia Laplace’a i odpowiednio z przekształcenia Z wyprowadzono rozwiązania równań stanu tych ciągłych i dyskretnych układów ułamkowego rzędu. Sformułowano i udowodniono warunki konieczne i wystarczające dodatniości tych układów. Na przykładzie dwójnika R,C pokazano możliwość zastosowania przedstawionych metod do analizy obwodów elektrycznych.
Czasopismo
Rocznik
Tom
Strony
135-141
Opis fizyczny
Bibliogra. 39 poz., wykr.
Twórcy
autor
- Bialystok Technical University, kaczorek@isep.pw.edu.pl
Bibliografia
- [1] Engheta N., On the role of fractional calculus in electromagnetic theory. IEEE Trans. Atenn. Prop., Vol. 39 (1997), No. 4, 35-46.
- [2] Farina L., Rinaldi S., Positive Linear Systems; Theory and Applications, J. Wiley, New York, 2000
- [3] Ferreira N.M.F, Machado J.A.T., Fractional-order hybrid control of robotic manipulators. Proc. 11th Int. Conf. Advanced Robotics, ICAR’2003, Coimbra, Portugal, 393-398.
- [4] Gałkowski K., Kummert A., Fractional polynomials and nD systems. Proc IEEE Int. Symp. Circuits and Systems, ISCAS’2005, Kobe, Japan, CD-ROM.
- [5] Kaczorek T., Positive 1D and 2D Systems, Springer-Verlag, London, (2002).
- [6] Kaczorek T., Computation of realizations of discrete-time cone systems. Bull. Pol. Acad. Sci. Techn. Vol. 54, (2006), No. 3, 347-350.
- [7] Kaczorek T., Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, Journal of Automation and System Engineering, (2008) (in Press).
- [8] Kaczorek T., Reachability and controllability to zero of positive fractional discrete-time systems. Machine Intelligence and Robotic Control, vol. 6, (2007), no. 4.
- [9] Kaczorek T., Reachability and controllability to zero of cone fractional linear systems, Archives of Control Scienes, vol. 17, (2007), no. 3, 357-367.
- [10] Kaczorek T., Fractional positive continuous-time linear systems and their reachability, Int. J. Appl. Math. Comput. Sci., vol. 18, (2008), no. 2, 223-228.
- [11] Kaczorek T., Realization problem for fractional continuous-time systems, Archives of Control Scienes.,vol.18, (2008), No 1, 5-20.
- [12] Kaczorek T., Realization problem for positive fractional linear systems . Inter. J. Factory Automation, (2008) (Submitted)
- [13] Kaczorek T., Realization problem for positive fractional hybrid 2D linear systems. COMPEL vol.27, (2008), No. 3., 613-623.
- [14] Kaczorek T., Fractional 2D linear systems. Journal of Automation, Mobile Robotics and Intelligent Systems, vol.2, (2008), No.2., 5-9
- [15] Kaczorek T., Positive 2D fractional linear systems. COMPEL (2008), (in Press).
- [16] Kaczorek T., Positive different orders fractional 2D linear systems. Acta Mechanica et Automatica, (2008), vol. 2, No. 2, 51-58
- [17] Kaczorek T., Positive fractional 2D hybrid linear systems. Bull. Pol. Acad. Sci. Technol., vol. 56, No. 1
- [18] Klamka J., Positive controllability of positive systems, Proc. of American Control Conference, ACC-2002, Anchorage, (CD-ROM).
- [19] Klamka J., Approximate constrained controllability of mechanical systems, Journal of Theoretical and Applied Mechanics, vol. 43, (2005), no. 3, 539-554.
- [20] Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differenctial Equations. Willey, New York 1993.
- [21] K. Nishimoto, Fractional Calculus. Koriama: Decartess Press, 1984.
- [22] Oldham K. B., Spanier J., The Fractional Calculus. New York: Academmic Press, 1974.
- [23] Ortigueira M. D., Fractional discrete-time linear systems, Proc. of the IEE-ICASSP 97, Munich, Germany, IEEE, New York, vol. 3, (1997), 2241-2244.
- [24] Ostalczyk P., The non-integer difference of the discrete-time function and its application to the control system synthesis. Int. J. Syst, Sci. vol. 31, (2000), no. 12, 1551-1561.
- [25] Ostalczyk P., Fractional-Order Backward Difference Equivalent Forms Part I – Horner’s Form. Proc. 1-st IFAC Workshop Fractional Differentation and its Applications, FDA’04, Enseirb, Bordeaux, France, (2004), 342-347.
- [26] Ostalczyk P., Fractional-Order Backward Difference Equivalent Forms Part II – Polynomial Form. Proc. 1st IFAC Workshop Fractional Differentation and its Applications, FDA’04, Enseirb, Bordeaux, France, (2004), 348-353.
- [27] Oustaloup A., Commande CRONE. Paris, Hermés, 1993.
- [28] Oustaloup A., La dérivation non entiére. Paris: Hermés, 1995.
- [29] Podlubny I., Fractional Differential Equations. San Diego: Academic Press, 1999.
- [30] Podlubny I., Geometric and physical interpretation of fractional integration and fractional differentation. Fract. Calc. Appl. Anal. Vol. 5, (2002), no. 4, 367-386.
- [31] PodlubnyI., Dorcak L., Kostial I., On fractional derivatives, fractional order systems and PIλDµ-controllers. Proc. 36th IEEE Conf. Decision and Control, San Diego, CA, (1997), 4985-4990.
- [32] Reyes-Melo M.E., Martinez-Vega J.J., Guerrero-Salazar C.A. Ortiz-Mendez U., Modelling and relaxation phenomena in organic dielectric materials. Application of differential and integral operators of fractional order. J. Optoel. Adv. Mat. Vol. 6, (2004), no. 3, 1037-1043.
- [33] Riu D., Retiére N., Ivanes M., Turbine generator modeling by non-integer order systems. Proc. IEEE Int. Electric Machines and Drives Conference, IEMDC 2001, Cambridge, MA, (2001), 185-187.
- [34] Samko S. G., Kilbas A.A., Martichew O.I., Fractional Integrals and derivative. Theory and Applications. London: Gordon&Breac 1993.
- [35] Sierociuk D., Dzieliński D., Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comp. Sci., vol. 16, (2006), no. 1, 129-140.
- [36] Sjöberg M., Kari L., Non-linear behavior of a rubber isolator system using fractional derivatives. Vehicle Syst. Dynam. Vol. 37, (2002), no. 3, 217-236.
- [37] Vinagre M., Monje C. A., Calderon A.J., Fractional order systems and fractional order control actions. Lecture 3 IEEE CDC’02 TW#2: Fractiional calculus Applications in Autiomatic Control and Robotics.
- [38] Vinagre M., Feliu V., Modeling and control of dynamic system using fractional calculus: Application to electrochemical processes and flexible structures. Proc. 41st IEEE Conf. Decision and Control, Las Vegas, NV, (2002), 214-239.
- [39] Zaborowsky V. Meylaov R., Informational network traffic model based on fractional calculus. Proc. Int. Conf. Info-tech and Info-net, ICII 2001, Beijing, China, vol. 1, (2001), 58-63.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOC-0049-0008