Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | R. 84, nr 9 | 135-141
Tytuł artykułu

Fractional positive linear systems and electrical circuits

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Dodatnie układy ciągle i dyskretne ułamkowego rzędu - możliwość zastosowania do analizy obwodów elektrycznych
Języki publikacji
EN
Abstrakty
EN
Fractional positive linear continuous-time and discrete-time systems are addressed. The solutions to the state equations of the fractional systems are derived using the Laplace and the Z transforms, respectively. Necessary and sufficient conditions are established for the internal and external positivity of the fractional systems. Some applications of the of the fractional systems theory to electrical circuits are given.
PL
W artykule są rozpatrywane dodatnie układy ciągle i dyskretne ułamkowego rzędu. Korzystając z przekształcenia Laplace’a i odpowiednio z przekształcenia Z wyprowadzono rozwiązania równań stanu tych ciągłych i dyskretnych układów ułamkowego rzędu. Sformułowano i udowodniono warunki konieczne i wystarczające dodatniości tych układów. Na przykładzie dwójnika R,C pokazano możliwość zastosowania przedstawionych metod do analizy obwodów elektrycznych.
Wydawca

Rocznik
Strony
135-141
Opis fizyczny
Bibliogra. 39 poz., wykr.
Twórcy
autor
Bibliografia
  • [1] Engheta N., On the role of fractional calculus in electromagnetic theory. IEEE Trans. Atenn. Prop., Vol. 39 (1997), No. 4, 35-46.
  • [2] Farina L., Rinaldi S., Positive Linear Systems; Theory and Applications, J. Wiley, New York, 2000
  • [3] Ferreira N.M.F, Machado J.A.T., Fractional-order hybrid control of robotic manipulators. Proc. 11th Int. Conf. Advanced Robotics, ICAR’2003, Coimbra, Portugal, 393-398.
  • [4] Gałkowski K., Kummert A., Fractional polynomials and nD systems. Proc IEEE Int. Symp. Circuits and Systems, ISCAS’2005, Kobe, Japan, CD-ROM.
  • [5] Kaczorek T., Positive 1D and 2D Systems, Springer-Verlag, London, (2002).
  • [6] Kaczorek T., Computation of realizations of discrete-time cone systems. Bull. Pol. Acad. Sci. Techn. Vol. 54, (2006), No. 3, 347-350.
  • [7] Kaczorek T., Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, Journal of Automation and System Engineering, (2008) (in Press).
  • [8] Kaczorek T., Reachability and controllability to zero of positive fractional discrete-time systems. Machine Intelligence and Robotic Control, vol. 6, (2007), no. 4.
  • [9] Kaczorek T., Reachability and controllability to zero of cone fractional linear systems, Archives of Control Scienes, vol. 17, (2007), no. 3, 357-367.
  • [10] Kaczorek T., Fractional positive continuous-time linear systems and their reachability, Int. J. Appl. Math. Comput. Sci., vol. 18, (2008), no. 2, 223-228.
  • [11] Kaczorek T., Realization problem for fractional continuous-time systems, Archives of Control Scienes.,vol.18, (2008), No 1, 5-20.
  • [12] Kaczorek T., Realization problem for positive fractional linear systems . Inter. J. Factory Automation, (2008) (Submitted)
  • [13] Kaczorek T., Realization problem for positive fractional hybrid 2D linear systems. COMPEL vol.27, (2008), No. 3., 613-623.
  • [14] Kaczorek T., Fractional 2D linear systems. Journal of Automation, Mobile Robotics and Intelligent Systems, vol.2, (2008), No.2., 5-9
  • [15] Kaczorek T., Positive 2D fractional linear systems. COMPEL (2008), (in Press).
  • [16] Kaczorek T., Positive different orders fractional 2D linear systems. Acta Mechanica et Automatica, (2008), vol. 2, No. 2, 51-58
  • [17] Kaczorek T., Positive fractional 2D hybrid linear systems. Bull. Pol. Acad. Sci. Technol., vol. 56, No. 1
  • [18] Klamka J., Positive controllability of positive systems, Proc. of American Control Conference, ACC-2002, Anchorage, (CD-ROM).
  • [19] Klamka J., Approximate constrained controllability of mechanical systems, Journal of Theoretical and Applied Mechanics, vol. 43, (2005), no. 3, 539-554.
  • [20] Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differenctial Equations. Willey, New York 1993.
  • [21] K. Nishimoto, Fractional Calculus. Koriama: Decartess Press, 1984.
  • [22] Oldham K. B., Spanier J., The Fractional Calculus. New York: Academmic Press, 1974.
  • [23] Ortigueira M. D., Fractional discrete-time linear systems, Proc. of the IEE-ICASSP 97, Munich, Germany, IEEE, New York, vol. 3, (1997), 2241-2244.
  • [24] Ostalczyk P., The non-integer difference of the discrete-time function and its application to the control system synthesis. Int. J. Syst, Sci. vol. 31, (2000), no. 12, 1551-1561.
  • [25] Ostalczyk P., Fractional-Order Backward Difference Equivalent Forms Part I – Horner’s Form. Proc. 1-st IFAC Workshop Fractional Differentation and its Applications, FDA’04, Enseirb, Bordeaux, France, (2004), 342-347.
  • [26] Ostalczyk P., Fractional-Order Backward Difference Equivalent Forms Part II – Polynomial Form. Proc. 1st IFAC Workshop Fractional Differentation and its Applications, FDA’04, Enseirb, Bordeaux, France, (2004), 348-353.
  • [27] Oustaloup A., Commande CRONE. Paris, Hermés, 1993.
  • [28] Oustaloup A., La dérivation non entiére. Paris: Hermés, 1995.
  • [29] Podlubny I., Fractional Differential Equations. San Diego: Academic Press, 1999.
  • [30] Podlubny I., Geometric and physical interpretation of fractional integration and fractional differentation. Fract. Calc. Appl. Anal. Vol. 5, (2002), no. 4, 367-386.
  • [31] PodlubnyI., Dorcak L., Kostial I., On fractional derivatives, fractional order systems and PIλDµ-controllers. Proc. 36th IEEE Conf. Decision and Control, San Diego, CA, (1997), 4985-4990.
  • [32] Reyes-Melo M.E., Martinez-Vega J.J., Guerrero-Salazar C.A. Ortiz-Mendez U., Modelling and relaxation phenomena in organic dielectric materials. Application of differential and integral operators of fractional order. J. Optoel. Adv. Mat. Vol. 6, (2004), no. 3, 1037-1043.
  • [33] Riu D., Retiére N., Ivanes M., Turbine generator modeling by non-integer order systems. Proc. IEEE Int. Electric Machines and Drives Conference, IEMDC 2001, Cambridge, MA, (2001), 185-187.
  • [34] Samko S. G., Kilbas A.A., Martichew O.I., Fractional Integrals and derivative. Theory and Applications. London: Gordon&Breac 1993.
  • [35] Sierociuk D., Dzieliński D., Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comp. Sci., vol. 16, (2006), no. 1, 129-140.
  • [36] Sjöberg M., Kari L., Non-linear behavior of a rubber isolator system using fractional derivatives. Vehicle Syst. Dynam. Vol. 37, (2002), no. 3, 217-236.
  • [37] Vinagre M., Monje C. A., Calderon A.J., Fractional order systems and fractional order control actions. Lecture 3 IEEE CDC’02 TW#2: Fractiional calculus Applications in Autiomatic Control and Robotics.
  • [38] Vinagre M., Feliu V., Modeling and control of dynamic system using fractional calculus: Application to electrochemical processes and flexible structures. Proc. 41st IEEE Conf. Decision and Control, Las Vegas, NV, (2002), 214-239.
  • [39] Zaborowsky V. Meylaov R., Informational network traffic model based on fractional calculus. Proc. Int. Conf. Info-tech and Info-net, ICII 2001, Beijing, China, vol. 1, (2001), 58-63.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOC-0049-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.