Warianty tytułu
Schematy różnicowe wyższego rzędu w dziedzinie czasu we współczesnym elektromagnetyzmie obliczeniowym: teoria i zastosowania
Języki publikacji
Abstrakty
The present paper provides a brief and systematically-organized survey of higher-order finite-difference time-domain (FDTD) schemes, unraveling their potential role as a promising modeling tool in modern computational electromagnetics. Recognized as a major breakthrough in the evolution of the traditional Yee’s technique, higher-order FDTD spatial/temporal operators remain the topic of an intense scientific research. Among their incontrovertible advantages, one can discern the advanced accuracy levels even for coarse lattice resolutions, the fast convergence rates, and the controllable stability. Actually, as the fabrication standards of avant-garde systems get stricter, it is evident that such properties become very attractive for the accomplishment of optimal and credible designs. Towards this goal, particular attention is drawn on the analysis of real-world applications, like contemporary waveguide and antenna structures. Numerical verification, through several demanding examples, substantiates the merits and the contributive nature of the enhanced schemes as a means to the researcher pursuing effective substitutes to customary approaches.
Przedstawiono przegląd schematów różnicowych wyższego rzędu w dziedzinie czasu – obiecującego narzędzia modelowania w elektromagnetyzmie obliczeniowym. Zwrócono szczególną uwagę na analizę współczesnych konstrukcji falowodowych i antenowych.
Czasopismo
Rocznik
Tom
Strony
1-12
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Aristotle University of Thessaloniki, kant@auth.gr
Bibliografia
- [1] Kunz K.S., Luebbers R.J., The Finite Difference Time Domain Method for Electromagnetics, CRC Press, 1993
- [2] Taflove A., Hagness S.C., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005
- [3] Fang J., Time Domain Finite Difference Computation for Maxwell’s Equations, Ph.D. thesis, Univ. of Berkeley, 1989
- [4] Turkel E., High-Order Methods, in Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, Taflove A., (Ed.), Artech House (1998), ch. 2, 63-110
- [5] Hesthaven J.S., High-Order Accurate Methods in Time-Domain Computational Electromagnetics: A Review, in Advances in Imaging and Electron Physics, Hawkes P., (Ed.), Academic Press, 127 (2003), 59-123
- [6] Georgakopoulos S.V., Birtcher C.R., Balanis C.A., Renaut R.A., Higher-Order Finite-Difference Schemes for Electromagnetic Radiation, Scattering, and Penetration, Part I: Theory, IEEE Antennas Propag. Mag., 44 (2002), No. 1, 134-142
- [7] Kantartzis N.V., Tsiboukis T.D., Higher-Order FDTD Schemes for Waveguide and Antenna Structures, Morgan & Claypool Publishers, 2006
- [8] Jurgens H.M., Zingg D.W., Numerical Solution of the Time-Domain Maxwell Equations Using High-Accuracy Finite-Difference Methods, SIAM J. Sci. Comput., 22 (2000), 1675-1696
- [9] Yefet A., Petropoulos P.G., A Staggered Fourth-Order Accurate Explicit Finite Difference Scheme for the Time-Domain Maxwell’s Equations, J. Comput. Phys., 168 (2001), No. 2, 286-315
- [10] Young J.L., Gaitonde D., Shang J.S., Toward the Construction of a Fourth-Order Difference Scheme for Transient EM Wave Simulation: Staggered Grid Approach, IEEE Trans. Antennas Propag., 45 (1997), No. 11, 1573-1580
- [11] Aidam M., Russer P., New High Order Time-Stepping Schemes for Finite Differences, in Proc. 15th Ann. Rev. Prog. Appl. Comput. Electromagn., Monterey, CA, (1999), 578-585.
- [12] Spachmann H., Schuhmann R., Weiland T., Higher Order Explicit Time Integration Schemes for Maxwell’s Equations, Int. J. Numer. Model., 15 (2002), Nos 5-6, 419-437
- [13] Xie Z., Chan C.-H., Zhang B., An Explicit Fourth-Order Orthogonal Curvilinear Staggered Grid FDTD Method for Maxwell’s Equations, J. Comput. Phys., 175 (2002), No. 2, 739-763
- [14] Hadi M.F., Piket-May M., A Modified FDTD (2,4) Scheme for Modeling Electrically Large Structures with High-Phase Accuracy, IEEE Trans. Antennas Propag., 45 (1997), No. 2, 254-264
- [15] Wang S., Teixeira F.L., Dispersion-Relation-Preserving FDTD Algorithms for Large-Scale Three-Dimensional Problems, IEEE Trans. Antennas Propag., 51 (2003), No. 8, 1818-1828
- [16] Shlager K.L., Schneider J.B., Comparison of the Dispersion Properties of Higher Order FDTD Schemes and Equivalent-Sized MRTD Schemes, IEEE Trans. Antennas Propag., 52 (2004), No. 4, 1095-1104
- [17] Zhao S., Wei G.W., High-Order FDTD Methods via Derivative Matching for Maxwell’s Equations with Material Interfaces, J. Comput. Phys., 200 (2004), No. 1, 60-103
- [18] Mickens R.E., Advances in the Applications of Nonstandard Finite Difference Schemes, World Scientific, 2005
- [19] Cole J.B., High-Accuracy Yee Algorithm Based on Nonstandard Finite Differences: New Developments and Verifications, IEEE Trans. Antennas Propag., 50 (2002), No. 9, 1185-1191
- [20] Kashiwa T., Sendo Y., Taguchi K., Ohtani T., Kanai Y., Phase Velocity Errors of the Nonstandard FDTD Method and Comparison with High-Accuracy FDTD Methods, IEEE Trans. Magn., 39 (2003), No. 4, 2125-2128
- [21] Bossavit A., Kettunen L., Yee-Like Schemes on a Tetrahedral Mesh with Diagonal Lumping, Int. J. Numer. Model., 12 (1999), Nos 1-2, 129-142
- [22] Tonti E., Finite Formulation of Electromagnetic Field, ICS Newsletter, 8 (2001), No. 1, 5-11
- [23] Gross P.W., Kotiuga P.R., Electromagnetic Theory and Computation: A Topological Approach, Cambridge University Press, 2004
- [24] Bérenger J.-P., A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, J. Comput. Phys., 114 (1994), No. 2, 185-200
- [25] Engheta N., Ziolkowski R., Positive Future for DNG Metamaterials, IEEE Trans. Microw. Theory Tech., 53 (2005), No. 4, 1535-1556
- [26] Caloz C., Itoh T., Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. The Engineering Approach, John Wiley & Sons-IEEE Press, 2006
- [27] Holloway C., McKenna P., Dalke R., Perala R., Devor C., Time-Domain Modeling, Characterization, and Measurements of Anechoic and Semi-Anechoic Electromagnetic Test Chambers, IEEE Trans. Electromagn. Compat., 44 (2002), No. 1, 102-118
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOC-0024-0003