Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | R. 88, nr 2 | 258-261
Tytuł artykułu

Design and Implementation of Dual-Microphone Adaptive-Active Noise Cancellation System for De-Noising Speech Signal

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Projekt i wykorzystanie podwójnego mikrofonu w adaptacyjnej metodzie usuwania szumu z sygnału mowy
Języki publikacji
EN
Abstrakty
EN
Active Noise Control (ANC) has become an important field of research in recent decades. Noise Control in industrial environments and conference halls as well as in communication systems has been studied under the title adaptive-active noise cancellation-control (AANCC) and the results of these studies have been used in practical applications. Reducing time dependent noise is one of the ways recommended for speech enhancement. Here we have introduced an artificial neural network called ADALINE as a smart dual microphone active noise control system. This artificial neural network identifies sources of noise and interference during its training phase and adjusts accordingly. In this way the system reduces the input signal noise. Tests and implementations presented here are based on speech in Persian language and cumulative white Gaussian noise and the interference is assumed to be of the cosine type.
PL
Przedstawiono analizę szumów w otoczeniu przemysłowym i w salach konferencyjnych a następnie przedstawiono metody adaptacyjnych metod redukcji szumów. Szczególną uwagę zwrócono na szum zależny od czasu. Zastosowano metodę podwójnego mikrofonu i wykorzystano sieci neuronowe. Sieć identyfikuje źródło szumu i zakłóceń. Metodę sprawdzono doświadczalnie.
Wydawca

Rocznik
Strony
258-261
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wykr.
Twórcy
  • 1,2- Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran, omidsht@sel.iaun.ac.ir
Bibliografia
  • [1] O. Sharifi-Tehrani and M. Ashourian, An FPGA-Based Implementation of ADALINE Neural Network with Low Resource Utilization and Fast Convergence, Przeglad Elektrotechniczny (Electrical Review), 86 (2010), No. 12, 288- 292.
  • [2] O. Sharifi-Tehrani, M. Ashourian and P. Moallem, An FPGABased Implementation of Fixed-Point Standard-LMS Algorithm with Low Resource Utilization and Fast Convergence, Inter. Rev. on Comp. and Soft. (IReCOS), 5 (2010), No. 4, 436-444.
  • [3] V.R. Mustafa, et al., Design and implementation of least mean square adaptive filter on Altera Cyclone II field programmable gate array for active noise control, IEEE Sym. on Industrial Electronics Applications - ISIEA, Kuala Lumpur, Malaysia, (2009), 479-484.
  • [4] M.T. Akhtar, Improving Performance of Active Noise Control Systems in the Presence of Uncorrelated Periodic Disturbance at Error Microphone, IEEE Transaction on Audio, Speech and Language Processing, 35 (2009), No. 3, 2041-2044.
  • [5] M. Bahoura and H.Ezzaidi, FPGA-implementation of a sequential adaptive noise canceller using Xilinx system generator, Inter. Conf. on Microelectronics - ICM, Marrakech, (2009), 213-216.
  • [6] M.T. Akhtar, On Active Noise Control Systems with Online Acoustic Feedback Path Modeling, IEEE Transaction on Audio, Speech and Language Processing, 15 (2007), No. 2, 593-600.
  • [7] E. Ghafarioun, O. Sharifi-Tehrani and T. Khaluei, An Evaluation of Probability of Transmitted Pilot Bit Error on Multi- Path Fading Channels and Using it in Estimation the Mobile Station Speed, Inter. Journ. on Comm. Anten. and Prop. (IReCAP), 1 (2011), No. 1.
  • [8] B.S. Kirei, M.D. Topa, I. Muresan, I. Homana and N. Toma, Blind Source Separation for Convolutive Mixtures with Neural Networks, Advances in Electrical and Computer Engineering (AECE), 11 (2011), No. 1, 63-68.
  • [9] N.A. Ahmad and F.Z. Okwonu, Least Squares Problem for Adaptive Filtering, Australian Journal of Basic and Applied Sciences, 5 (2011), No. 3, 69-74.
  • [10] A. Sergi and A. Cichocki, Hyper Radial Basis Function Neural Networks for Interference Cancellation with Nonlinear Processing of Reference Signal, Journal of Digital Signal Processing, 11 (2001), 204-221.
  • [11] P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, Kluwer, Boston, 2nd edition, 2002.
  • [12] I. Mcloughlin, Applied Speech and Audio Processing, Cambridge University Press, Singapore, (2009).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPOB-0050-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.