Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | R. 56, nr 12 | 745-752
Tytuł artykułu

Zastosowanie mikroreaktorów przepływowych do syntezy nanocząstek metali szlachetnych (Pt, Pd, Au). Przegląd literatury

Warianty tytułu
EN
Application of flow microreactors for synthesis of noble metals nanoparticles (Pt, Pd, Au). Review
Języki publikacji
PL
Abstrakty
PL
W artykule zebrano informacje na temat możliwości zastosowania mikroreaktorów przepływowych do syntezy nanocząstek metali szlachetnych, takich jak: platyna, pallad i złoto. Na podstawie zebranych danych stwierdzono, że mikroreaktory przepływowe są obiecującym narzędziem umożliwiającym kontrolowaną syntezę nanocząstek metali o wąskiej dystrybucji rozmiarów w porównaniu do syntezowanych klasycznie, w tzw. reaktorze cyklicznym. Wyniki badań większości cytowanych autorów potwierdzają m.in., że szybkość przepływu reagentów przez mikroreaktor ma znaczący wpływ na wielkość i dystrybucję otrzymywanych nanocząstek. Są one mniejsze i bardziej jednorodne niż otrzymywane w reaktorze cyklicznym.
EN
In this work, literature data about application of the flow microreactors for synthesis of noble metal nanoparticles (like gold, palladium and platinum) are collected. Using these information it was concluded that flow microreactor systems are promising tool for controlled synthesis of noble metal nanoparticles with the narrow size distribution in comparison with synthesized classically in the batch reactor. Collected results of the most cited authors here confirm that the flow rate of reactants through the microreactor significantly influences the size and size distribution synthesized nanoparticles. It can be generally concluded that obtained using such method nanoparticles are smaller and more uniform if compare with the synthesized in the batch reactor.
Wydawca

Rocznik
Strony
745-752
Opis fizyczny
Bibliogr. 38 poz., tab.
Twórcy
autor
autor
autor
  • AGH Akademia Górniczo-Hutnicza, Wydział Metali Nieżelaznych, Katedra Fizykochemii i Metalurgii Metali Nieżelaznych, al. Mickiewicza 30, 30-059 Kraków
Bibliografia
  • 1. Martin M. N., Basham J. I., Chando P., Eah S. K.: Charge gold nanoparticles in non‐polar solvents: 10‐min synthesis and 2D selfassembly. Langmuir, 2010, t. 26, nr 10, s. 7410-7417.
  • 2. Shukla S., Seal S.: Cluster size effect observed for gold nanoparticles synthesized by sol‐gel technique as studied by x‐ray photoelectron spectroscopy. Nanostructured Materials, 1999, t. 11, nr 8, s. 1181-1193.
  • 3. Montero A. M., Gennero de Chialvo R. M., Chialvo A. C.: Preparation of gold nanoparticles supported on glassy carbon by direct spray pyrolysis. Journal of Materials Chemistry, 2009, t. 20.
  • 4. Cross C. E., Hemminger J. C., Panner R. M.: Physical vapor deposition of one‐dimensional nanoparticles array on graphite: seeding the electrodeposition of gold nanowires. Langmuir, 2007, t. 23, nr 20, s. 10372-10379.
  • 5. Mafune F., Kohno, J., Takeda Y., Kondow T.: Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. The Journal of Physical Chemistry B, 2001, t. 105, nr 22, s. 5114-5120.
  • 6. Yu Y. Y., Chang S. S., Lee C. L., Wang C. R. C.: Gold nanorods: electrochemical synthesis and optical properties. The Journal of Physical Chemistry B, 1997, t. 101, nr 34, s. 6661-6664.
  • 7. Okumura M., Nakamura S., Tsubota S., Nakamura T., Haruta M.: Deposition of gold nanoparticles on silica by CVD of gold acethylacetonate. Applied Catalysis A: General, 2005, nr 291, s. 13-20.
  • 8. Handbook of nanophase and nanostructured materials, Edited by Zhong Ling Wang, Kluwer Academic/Plenum Publishers, New York 2003.
  • 9. Jun‐ichi Yoshiba: Flash Chemistry: Fast Organic Synthesis In Microsystems. John Wiley & Sons, LTd 2008, s. 107.
  • 10. Krummradt H., Kopp U., Stoldt J.: Experiences with the Use of Microreactors In Organic Synthesis, In Microreaction Technology: 3rd Int. Conf. on Microreaction Technology, Proc. Of IMRET 3 (ed: W. Ehrfeld), Springer‐Verlag, Berlin 200, s. 181.
  • 11. Krishnadasan S., Tovilla J., Vilar R., de Mello A. J., de Mello J. C.: On‐line analysis of CdSe nanoparticles formation in a continuous flow chip‐base microreactor. Journal of Materials Chemistry, 2004, t. 14, s. 2655-2660.
  • 12. Lin X. Z., Terepka A. D., Yang H.: Synthesis of silver nanoparticles in a continous flow tubular microreactors. Nano Letters, 2004, t. 4, nr 11, s. 2227-2232.
  • 13. He S. T., Liu Y. L., Maeda H.: Controled synthesis of colloidal silver nanoparticles in capillary micro‐flow reactor. J. Nanopart. Res., 2008, t. 10, s. 209-215.
  • 14. Huang J., Lin L., Li Q., Sun D., Wang Y., Lu Y., He N., Yang K., Yang X., Wang H., Wang W., Lin W.: Continoues‐flow biosynthesis of silver nanoparticles by lixivium of sundried cinnamomum camphora leaf in tubular microreactors. Ind. Eng. Chem. Res. 2008, t. 47, s. 6081-6090.
  • 15. Zinoveva S., De Silva R., Louis R. D., Datta P., Kumar C. S. S. R., Goetter J., Hormes J.: The wet chemical synthesis of Co nanoparticles in a microreactor system: A time‐resolved investigation by X‐ray absorption spectroscopy. Nuclear Instruments & Physics Research A, 2007, t. 582, s. 239-241.
  • 16. Song Y., Modrow H., Henry L. L., Saw C. K., Doomes E. E., Palshin V., Hormes J., Kumar C. S. S. R.: Microfluidic synthesis of cobalt nanoparticles, chemistry of materials. Chemistry of Materials, 2006, t. 18., s. 1817÷2827.
  • 17. Chan E. M., Mathies R. A., Alivisatos A. P.: Size‐controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Letters, 2003, t. 3, nr 2, s. 199-201.
  • 18. Kawa M., Moii H., Ioku A., Saita S., Okuyama K.: Largescale production of CdSe nanocrystal by a continuous flow reactor. Journal of Nanoparticles Research, 2003, t. 5., s. 81-85.
  • 19. Edel J. B., Krishandasan S., cao‐Romera J. T., Vilar R., de Mello J. C., de Mello A. J.: Continuous real‐time monitoring of quantum dot synthesis with microfluidic reactor. 7th international conference on miniaturized chemical and biochemical analysis systems, October 5‐9, 2003, Squaw Valley, California USA.
  • 20. Köhler J.M., Wagner J., Albert J.: Formation of isolated and clustered Au nanoparticles in the presence of polyelectrolyte molecules using a flow‐through Si chip reactor. Journal of Materials Chemistry, 2005, nr 15, s. 1924÷1930.
  • 21. Song Y., Kumar C. S. S. R., Hormes J.: Synthesis of palladium nanoparticles using a continuous flow polymeric microreactor. Journal of Nanoscience and Nanotechnology, 2004, t.4, nr 7, s. 788-793.
  • 22. Wagner J., Kirner T., Mayer G., Albert J., Köhler J. M.: Generation of metal nanoparticles in a microchannel reactor. Chemical Engineering Journal, 2004, nr 101, s. 251-260.
  • 23. Wagner J., Köhler J. M.: Continuous synthesis of gold nanoparticles in a microreactor. Nano Letters, 2005, t. 5, nr 4, s. 685-691.
  • 24. Shalom D., Wootton R. C. R., Winkle R. F., Cottam B. F., Vilar R., de Mello A. J., Wilde C. P.: Synthesis of thiol functionalized gold nanoparticles using a continuous flow microfluidic reactor. Materials Letters, 2007, t. 61, s. 1146-1150.
  • 25. Köhler J. M., Held M., Hubner U., Wagner J.: Formation of Au/Ag Nanoparticles in a Two Step Micro Flow‐Through Process. Chem. Eng. Technol. 2007, t. 30, nr 3, s. 347-354.
  • 26. Wagner J., Tshikhudo T. R., Köhler J. M.: Microgluidic generation of metal nanoparticles by borohydride reduction. Chemical Engineering Journal, 2008, t. 135, s. 104-109.
  • 27. Köhler J. M., Abahmane L., Wagner J., Albert J., Mayer G.: Preparation of metal nanoparticles with varied composition for catalytically applications in microreactors. Chemical Engineering Science, 2008, t. 63, s. 5048-5055.
  • 28. Niesz K., Hornyak I., Borcsek B., Darvas F.: Nanoparticle synthesis completed with in situ catalyst preparation performer on a high‐pressure high‐temperature continuous flow reactor, 2008, t. 5, s. 411-416.
  • 29. Weng C. H., Huang C. C., Yeh C. S., Lei H. Y., Lee G. B.: Synthesis of hexagolan gold nanoparticles using a microfluidic reaction system. Journal of Micromechanics and Microengineering, 2008, t. 18, s. 1-8.
  • 30. Moisan S., Marty J. D., Cansell F., Aymonier C.: Preparation of functional hybrid palladium nanoparticles using supercritical fluids: a novel approach to detach the growth and functionalization step. Chem. Comm, 2008, s. 1428-1430.
  • 31. Singh A., Shirolkar M., Lalla N. P., Malek C. K., Kulkarni S. K.: Room temperature, water‐based, microreactor synthesis of gold and silver nanoparticles. International Journal of Nanotechnology, 2009, t. 6, s. 541-551. 752
  • 32. Torgoe K., Watanabe Y., Endo T., Sakai K., Sakai H., Abe M.: Microflow reactor synthesis of palladium nanoparticles stabilized with poly(benzyl ether) Dendron ligands. Journal of Nanoparticle Resarch, dostępny on‐line 13 May 2009.
  • 33. Wojnicki M., Pacławski K., Luty‐Błocho M., Fitzner K., Oakley P., Stretton A.: Synteza nanocząstek złota stabilizowanych PVA (alkohol poliwinylowy) w mikroreaktorze przepływowym. Rudy Metale, 2009, t. 54, nr 12, s.848-852.
  • 34. Luty‐Błocho M., Fitzner K., Hessel V., Löb P., Maskos M., Metzke D., Pacławski K., Wojnicki M.: Synthesis of gold nanoparticles in an interdigital micromixer using ascorbic acid and sodium borohydride as reducers. Chemical Engineering Journal, 2011, nr 171, s. 279-290.
  • 35. Luty‐Błocho M., Pacławski K., Jaworski W., Streszewski B., Fitzner K: Kinetic studies of gold nanoparticles formation in the batch and in the flow microreactor system. Prog. Colloid Polym. Sci., 2011, nr 138, s. 39-44.
  • 36. Sung‐Yi Yang, Fong‐Yu Chang, Chen‐Sheng Yeh, Gwo‐Bin Lee: Size controlled synthesis of gold nanoparticles using a micro mixing system. Microfluid Nanofluid, 2009, t. 8, s. 303-311.
  • 37. Desportes S., Fries D. M., Trachsel F., von Rohr P. R.: Synthesis of palladium nanoparticles from ogranometalic chemistry route in a two phase flow microreactor. Twelfth International Conference on Miniaturized Systems for Chemistry and life Sciences October 12-16, 2008, San Diego, California USA.
  • 38. Kohler J. M., Romanus H., Hübner U., Wagner J.: Formation of star‐like and core‐shell AuAg nanoparticles during twoand three‐step preparation in batch and in microfluidic systems. Jurnal of Nanomaterials, 2007, s. 1-7.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPK6-0012-0078
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.