Warianty tytułu
Classification of Video Sequences into Specified Generalized Use Classes of Target Size and Lighting Level
Konferencja
XXVIII Krajowe Sympozjum Telekomunikacji i Teleinformatyki (18 ; 12-14.09.2012 ; Warszawa-Miedzeszyn, Polska)
Języki publikacji
Abstrakty
Przedstawiono badania mające na celu opracowanie algorytmów automatycznie klasyfikujących sekwencje wizyjne do wybranych Uogólnionych Klas Użytkowania (Generalized Use Classes - GUC) na podstawie wielkości obiektu i poziomu oświetlenia. Opisano badania przeprowadzone na ekspertach, za pomocą specjalnie stworzonego interfejsu oraz analizę uzyskanych wyników. Szczegółowo omówiono proponowany algorytm klasyfikujący sekwencje wizyjne oraz poddano go ocenie. Prace opisane w artykule były realizowane w ramach projektu INDECT.
This paper presents the research devoted to development of algorithms for automatic classification of video sequences into specified Generalized Use Classes of target size and lighting level. The experiment conducted on the experts with a specially created interface, and the analysis of the obtained results are described first. Next, the developed algorithm that classifies video sequences, and its evaluation arę discussed. The research described in this paper was conducted under the INDECT project.
Rocznik
Tom
Strony
646-650
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
Bibliografia
- [1] Leszczuk M., Stange I., Ford C.: Determining image quality requirements for recognition tasks in generalized public safety video applications: Definitions, testing, standardization, and current trends, IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB) 2011
- [2] VQiPS, Video quality tests for object recognition applications, U.S. Department of Homeland Security's Office for Interoperability and Compatibility, Online, Available: http://www.safecomprogram.gov/ SAFECOM/library/technology/1627 additionalstatement.htm, 2011
- [3] ITU-T R910, Subjective video quality assessment methods for multimedia applications, International Telecommunication Union Recommendation, Online, Available: http://www.itu.int/rec/T-REC-R910-200804-l, 1999
- [4] ITU-T R912, Subjective video quality assessment methods for recognition tasks, International Telecommunication Union Recommendation, Online, Available: http://www.itu.int/rec/T-REC-R912-200808-l, 2008
- [5] Szczuko R, Romaniak R, Leszczuk M., Mirek R., Pleva M., Ondas S., Szwoch G., Korus R, Kollmitzer C., Dalka R, Kotus J., Ciarkowski A., Dąbrowski A., Pawłowski R, Marciniak T, Weychan R., Misiorek R: D1.2, report on NS and CS hardware construction, The INDECT Consortium: Intelligent Information System Supporting Observation, Searching and Detection for Security of Citizens in Urban Environment, European Seventh Framework Programme FP7-218086-collaborative project, Europa, Tech. Rep., 2010
- [6] The MathWorks Inc., MATLAB documentation, Online, Available: http://www.mathworks.com/help/techdoc/, 2011
- [7] Szwoch G., Dalka R, Czyżewski A.: Objects classification based on their physical sizes for detection of events in camera images, Signal Processing Algorithms, Architectures, Arrangements, and Applications (SRA) 2008
- [8] Szwoch G., Dalka R: Identification of regions of interest in video for a traffic monitoring system, Proc. 1st Intern. Conf. on Information Technology, 2008
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0076-0032