Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Nr 70(621) | 3-96
Tytuł artykułu

Barierowe, adhezyjne i elektrochemiczne aspekty działania systemów powłokowych na stali

Autorzy
Warianty tytułu
EN
Barrier, adhesional and electrochemical aspects of organic coatings on steel
Języki publikacji
PL
Abstrakty
PL
Powłoki organiczne są najbardziej powszechnie stosowanym i stosunkowo tanim sposobem ochrony przed korozj metalowych elementów i obiektów inżynierskich. Obecnie nie istnieją wiarygodne i skuteczne metody wyboru i oceny organicznych powłok przeciwkorozyjnych. Można to tłumaczyć skomplikowaniem kinetyki procesów elektrodowych na powierzchni metalowego podłoa pod powłok (w porównaniu z układami metal-elektrolit), co sprawia, e ustalenie faktycznego mechanizmu korozji jest dość skomplikowane. Ponadto, zachowanie systemu powłokowego podczas ekspozycji jest również złożone i zalety od wielu czynników. Duże nadzieje w zakresie badań układów powłokowych wiąże się z wykorzystaniem elektrochemicznej spektroskopii impedancyjnej (EIS), ale technika ta wymaga opracowania nowych rozwiązań eksperymentalnych. W celu wyjaśnienia problemów pojawiających się przy formułowaniu i ocenie właściwości powłok organicznych, konieczne jest stworzenie odpowiednich modeli i metod pomiaru. Niniejsza monografia przedstawia osiągnięcia autora w dziedzinie bada wielowarstwowych powłok organicznych na stali i przedstawia możliwości oceny ich właściwości ochronnych i mechanizmów działania. Uzyskane wyniki i wnioski zostały uporządkowane w oparciu o ogólnie przyjętą klasyfikację mechanizmów ochronnych powłok organicznych na podłożu stalowym. Zakłada się, że istnieją trzy mechanizmy, dzięki którym organiczne powłoki ochronne chronią metal przed korozją: -mechanizm barierowy (fizykochemiczny), -mechanizm adhezyjny, -mechanizm elektrochemiczny. Technika EIS została wykorzystana do badania i optymalizacji działania ochronnego każdego z tych mechanizmów. Obecnie systemy powłokowe wykazują wysoką, wieloletnią trwałość. Z tego powodu tradycyjne metody oceny właściwości barierowych nie mogą być stosowane. Zaproponowano wykorzystanie szoków termicznych i cyklicznych zmian temperaturowych do przyspieszonej degradacji systemów powłokowych na stali. Pomiary impedancyjne zostały uyte do monitorowania zmian wywołanych przez cykliczne zmiany temperatury. Uzyskane wyniki wykorzystano do wykazania skuteczności cyklicznych zmian temperaturowych dla przyspieszenia degradacji powłoki organicznej bez zmiany mechanizmu degradacji charakterystycznego dla naturalnych warunków. Dane dotyczące degradacji w warunkach cyklicznych temperaturowych interpretowano w oparciu o elektryczny schemat zastpczy modelujący badany układ. Udowodniono zasadność stosowania cykli temperaturowych poprzez wykazanie istotnego wpływu cyklicznej zmienności temperatury naturalnego środowiska atmosferycznego na trwałość systemów powłokowych. Opracowano i opatentowano krótkotrwały test wykorzystujący cykliczne narażenia temperaturowe w celu zastąpienia długotrwałych testów VDA 621–415 wykorzystywanych do oceny nowych powłok samochodowych w Niemczech.
EN
Organic coatings are the most common and cost effective mode of corrosion protection for metallic objects and engineering structures. Nowadays, there are no reliable and efficient methods for the choice of protective coatings and evaluation of their efficiency. This can be explained by the very complicated kinetics of electrode processes on coated surfaces (as compared to metal-electrolyte systems), which makes the determination of the actual mechanism of corrosion quite complicated. Additionally, the performance of coating system during exposure is also complex and depends on many factors. The great expectations are associated with the use of the electrochemical impedance spectroscopy (EIS) technique but new developments in this area are needed. In order to solve problems, which arise in formulating and evaluating the properties of organic coatings, it is necessary to provide appropriate models and methods. This monograph presents the author's achievements in the field of testing of multi-layer coating systems on steel and the evaluation of protective properties of these systems and mechanism of their activity. The presented results and findings were arranged based on the generally accepted classification of the protective mechanisms of organic coatings applied on a steel substrate. It is assumed that there are essentially three mechanisms by which organic coating systems protect against metal corrosion: . the barrier (physicochemical), . the adhesional, and . the electrochemical mechanisms. The EIS technique was used to test and optimize the protective effect of each of these mechanisms. The present coating systems exhibit a high, long-term durability. Traditional methods for assessing the barrier properties of coating systems are not applicable due to their high durability. The thermal shock and the temperature cycling methods were used to accelerate the degradation of organic coatings applied on steel substrate. EIS experiments were used to monitor the induced changes. The results were used to demonstrate the effectiveness of the cycling method at accelerating the degradation of an organic coating without changing the normal mechanism of degradation. Details of the cycling degradation were evaluated using an equivalent circuit to help to interpret the electrochemical impedance data. It justified the reason of use of temperature cycles because of the temperature variability of the natural environment of exposure. Short test was developed to replace long-term VDA 621–415 test used to evaluate new automotive coating systems in Germany. Procedures and apparatus developed for this purpose have been patented and are currently used in practice in the research laboratories of BASF, the patent holder. EIS provides a quantitative evaluation of the protection afforded by coatings on metals but for the first time this technique was applied for interlayer adhesion evaluation. Embedded sensors were used as an in situ adhesion-sensing device for steel substrate protected by automotive organic coatings. The use of embedded electrodes placed between a topcoat and primer can overcome EIS limitations and make EIS monitoring more applicable to coatings in the field. A two-electrode, nonsubstrate configuration involves two embedded electrodes on a coated panel acting as the working and counter/reference electrodes. This configuration has been used to characterize the interlayer adhesion between a topcoat and primer under the assumption that the current passed through the interlayer.
Słowa kluczowe
Wydawca

Rocznik
Strony
3-96
Opis fizyczny
Bibliogr. 271 poz., rys.
Twórcy
autor
  • Katedra Elektrochemii, Korozji i Inynierii Materiałowej
Bibliografia
  • [1] Corrosion costs and preventive strategies in the United States, Report by CC Technologies Laboratories, Inc. to Federal Highway Administration (FHWA), Office of Infrastructure Research and Development, Report FHWA-RD-01-156, September 2001, http://www.corrosioncost.com/.
  • [2] Bhaskaran R., Palaniswamy N., Rengaswamy N.S., Jayachandran M.: A review of differing approaches used to estimate the cost of corrosion (and their relevance in the development of modern corrosion prevention and control strategies), Anti – Corros. Method M., 52 (2005) 29−42.
  • [3] Le May I., Deckker E.: Reducing the risk of failure by better training and education, Eng. Fail. Anal., 16 (2009) 1153–1162.
  • [4] Weldon D. G.: Failure analysis of paints and coatings, John Wiley & Sons, Chichester 2009.
  • [5] Directive COM (2002) 750, Final on the limitation of emissions of volatile organic compounds due to the use of organic solvents in decorative paints and varnishes and refinishing products and amending Directive, 1999/13/EC, 23-12-2002.
  • [6] Nobel M. L., Picken S. J., Mendes E.: Waterborne nanocomposite resins for automotive coating applications, Prog. Org. Coat., 58 (2007) 96–104.
  • [7] Groshart E.: Finishing in the green: using less solvent in paints, Metal Finish., 95 (1997) 76−78.
  • [8] Weiss K.: Paint and coatings: a mature industry in transition, Prog. Polym. Sci., 22 (1997) 203−245.
  • [9] Ron J.: High-solids, low-voc, solvent-based coatings, Metal Finish., 98 (2000) 106−115.
  • [10] Liebscher H.: Economic solutions for compliance to the new European VOC Directive, Prog. Org. Coat., 40 (2000) 75−83.
  • [11] Sinko J.: Challenges of chromate inhibitor pigments replacement in organic coatings, Prog.Org. Coat., 42 (2001) 267−282.
  • [12] del Amo B., Romagnoli R., Deyá C., González J.A.: High performance water-based paints with non-toxic anticorrosive pigments, Prog. Org. Coat., 45 (2002) 389−397.
  • [13] Bierwagen G., Brown R., Battocchi D., Hayes S.: Active metal-based corrosion protective coating systems for aircraft requiring no-chromate pretreatment, Prog. Org. Coat., 67 (2010) 195−208.
  • [14] Buchheit R. G., Guan H., Mahajanam, S., Wong F.: Active corrosion protection and corrosion sensing in chromate-free organic coatings, Prog. Org. Coat., 47 (2003) 174−182.
  • [15] Funke W.: Problems and progress in organic coatings science and technology, Prog. Org. Coat., 31 (1997) 5−9.
  • [16] Bierwagen G. P.: Reflections on corrosion control by organic coatings, Prog. Org. Coat., 28 (1996) 43−48.
  • [17] Grundmeier G., Schmidt W., Stratmann M.: Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation, Electrochim. Acta, 45 (2000) 2515–2533.
  • [18] Miszczyk A., Darowicki K.: Use of impedance spectroscopy to evaluate the durability of protective coatings after thermal shock, Corros. Sci., 40 (1998) 663−672.
  • [19] Miszczyk A., Darowicki K.: Accelerated ageing of organic coating systems by thermal treatment, Corros. Sci., 43 (2001) 1337−1343.
  • [20] Miszczyk A., Darowicki K.: Effect of environmental temperature variations on protective properties of organic coatings, Prog. Org. Coat., 46 (2003) 49−54.
  • [21] VDA 621-415, Testing of Corrosion Protection of Vehicle Paint by Alternating Cycles Test, VDA, Frankfurt, Germany, 1982.
  • [22] Patent DE102004027792, 05.01.2006, Vorrichtung und Verfahren zur Beschleunigten Durchführung von Korrosionstests, BASF AG Ludwigshafen, Fernandez-Gonzalez M., Hickl M., Hezel F., Schauer T., Miszczyk A.
  • [23] Dornbusch M.: The use of modern electrochemical methods in the development of corrosion protective coatings, Prog. Org. Coat., 61 (2008) 240−244.
  • [24] Miszczyk A., Schauer T.: Electrochemical approach to evaluate the interlayer adhesion of organic coatings, Prog. Org. Coat., 52 (2005) 298−305.
  • [25] Miszczyk A., Darowicki K., Schauer, T.: Evaluation of relative humidity effects on interfacial impedance at inter-coat interfaces, Polish J. Chem., 78 (2004) 1823−1831.
  • [26] Miszczyk A., Darowicki, K., Schauer T.: Impedance-based sensing of the interlayer adhesion loss in organic coating systems, J. Solid State Electrochem., 9 (2005) 909−913.
  • [27] Miszczyk A., Szocinski M., Darowicki, K.: Interlayer defect evolution in an organic coating system on steel under hydromechanical loading, J. Appl. Electrochem., 37 (2007) 353−358.
  • [28] Su Q., Allahar K., Bierwagen G.: Embedded electrode electrochemical noise monitoring of the corrosion beneath organic coatings induced by ac-dc-ac conditions, Electrochim. Acta, 53 (2008) 2825−2830.
  • [29] Allahar K. N., Hinderliter B. R., Tallman D. E.: Water transport in multilayer organic coatings, J. Electrochem. Soc., 155 (2008) F201−F208.
  • [30] Allahar K. N., Su Q., Bierwagen G. P.: Monitoring of the AC-DC-AC Degradation of Organic Coatings Using Embedded Electrodes, Corrosion (NACE), 64 (2008) 773−787.
  • [31] Su Q., Allahar K. N., Bierwagen G. P.: Application of embedded sensors in the thermal cycling of organic coatings, Corros. Sci., 50 (2008) 2381−2389.
  • [32] Bierwagen G. P., Allahar K. N., Su Q.: Electrochemically characterizing the ac-dc-ac accelerated test method using embedded electrodes, Corrosi. Sci., 51 (2009) 95−101.
  • [33] Allahar K. N., Upadhyay V., Bierwagen G. P.: Monitoring of a military vehicle coating under Prohesion exposure by embedded sensors, Prog. Org. Coat., 65 (2009) 142−151.
  • [34] Allahar K., Su Q., Bierwagen G.: Non-substrate EIS monitoring of organic coatings with embedded electrodes, Prog. Org. Coat., 67 (2010) 180−187.
  • [35] Su Q., Allahar K. N., Bierwagen G. P.: In Situ Embedded Sensor Monitoring of a United States Air Force Primer Beneath a Topcoat Exposed to Atmospheric Humidity and Thermal Conditions, Corrosion (NACE), 66 (2010) Article Number: 066001.
  • [36] Allahar K. N., Wang D., Battocchi D.: Real-time monitoring of a United States Air Force topcoat/Mg-rich primer system in ASTM B117 exposure by embedded electrodes, Corrosion (NACE), 66 (2010) Article Number: 075003.
  • [37] Allahar K. N., Su Q., Bierwagen G. P.: Electrochemical noise monitoring of the cathodic protection of Mg-rich primers, Corrosion (NACE), 66 (2010) Article Number: 085003.
  • [38] Miszczyk A.: Messtechnische Erfassung und Optimierung der Haftfestigkeit und Barriereeigenschaften von Decklacken, BMWi/AiF Nr. 13070 N, Schlussbericht, Stuttgart 2003.
  • [39] Miszczyk A., Darowicki K.: Multispectral impedance quality testing of coil-coating system using principal component analysis, Prog. Org. Coat., 69 (2010) 330−334.
  • [40] Miszczyk A., Darowicki K.: Study of anticorrosion and microwave absorption properties of NiZn ferrite pigments, Anti-Corros. Method. M., 58 (2011) 13−21.
  • [41] Funke W.: How organic coating systems protect against corrosion, vol. 322, Polymeric Materials for Corrosion Control, American Chemical Society, Washington, DC 1986, 222−228.
  • [42] Grundmeier G., Schmidt W., Stratmann M.: Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation, Electrochim. Acta, 45 (2000) 2515−2533.
  • [43] Wicks Z. W., Jones F. N., Pappas S. P.: Organic Coatings: Science and Technology, Wiley, New York 1999.
  • [44] Fettis G.: Automotive Paints and Coatings, VCH, Weinheim, 1995.
  • [45] Khanna A. S.: High-performance Organic Coatings, CRC Press, Boca Raton Boston New York Washington, DC, 2008.
  • [46] Leidheiser H., Mills D. J., Bilder W.: The permeability of a polybutadiene coatings to ions, water and oxygen, J. Electrochem. Soc., 133 (1986) C304-C314.
  • [47] Yasuda H., Yu Q. S., Chen M.: Interfacial factors in corrosion protection: an EIS study of model systems, Prog. Org. Coat., 41 (2001) 273–279.
  • [48] Sangaj N. S., Malshe V. C.: Permeability of polymers in protective organic coatings, Prog. Org. Coat., 50 (2004) 28−39.
  • [49] Hare C.: Protective Coatings: Fundamentals of Chemistry and Composition, Technology Publishing, Pittsburg, 1994.
  • [50] Kalenda P., Kalendova A., Stengl V.: Properties of surface-treated mica in anticorrosive coatings, Prog. Org. Coat., 49 (2004) 137−145.
  • [51] Emira H. S.: A novel approach to the synthesis of a non-toxic, platy pigment for anticorrosive paints, Pigm. Resin Technol., 34 (2005) 132−138.
  • [52] Yarovsky I., Evans E.: Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins, Polymer, 43 (2002) 963−969.
  • [53] Cate A. T., Reinders S. A. F., Turkenburg D. H.: High density hydrophilic and hydrophobic brush coatings using a polymeric primer layer, Prog. Org. Coat., 64 (2009) 221−224.
  • [54] Funke W.: The role of adhesion in corrosion protection by organic coatings, J. Oil Colour Chemists Assoc., 68 (1985) 292−292.
  • [55] Negele O., Funke W.: Internal stress and wet adhesion of organic coatings, Prog. Org. Coat., 28 (1996) 285−289.
  • [56] Funke W.: Problems and progress in organic coatings science and technology, Prog. Org Coat., 31 (1997) 5−9.
  • [57] Leidheiser H., Funke W.: Water disbondment and wet adhesion of organic coatings on metals – a review and interpretation, J. Oil Colour Chemists Assoc., 70 (1987) 121−132.
  • [58] Leidheiser H.: Mechanisms of de-adhesion of organic coatings from metal-surfaces, vol. 322, Polymeric Materials for Corrosion Control, American Chemical Society, Washington, DC 1986, 124−135.
  • [59] Prosek T., Thierry D.: A model for the release of chromate from organic coatings, Prog. Org. Coat., 49 (2004) 209−217.
  • [60] Lieng-Huang L.: Fundamentals of adhesion, Plenum Press, New York 1991.
  • [61] Kinloch A. J.: Adhesion and adhesives, Chapman and Hill, London 1987.
  • [62] Brewis D. H., Briggs D.: Industrial adhesion problems, Orbital Press, Oxford 1985.
  • [63] Lacombe R.: Adhesion measurement methods: theory and practice, CRC Taylor & Francis, 2006.
  • [64] Morcillo M., Rodriguez F. J., Bastidas J.M.: The influences of chlorides, sulphates and nitrates at the coating-steel interface on underfilm corrosion, Prog. Org. Coat., 31 (1997) 245−253.
  • [65] Legghe E., Aragon E. Belec L.: Correlation between water diffusion and adhesion loss: study of an epoxy primer on steel, Prog. Org. Coat., 66 (2009) 276−280.
  • [66] Mittal K. L.: Adhesion Aspects of Polymeric Coatings, Plenum Press, New York 1983.
  • [67] Bastos A. C., Ferreira M. G., Simoes A. M.: Corrosion inhibition by chromate and phosphate extracts for iron substrates studied by EIS and SVET, Corr. Sci., 48 (2006) 1500−1512.
  • [68] Kalendova A., Vesely D., Kalenda P.: A study of the effects of pigments and fillers on the properties of anticorrosive paints, Pigm. Resin Technol., 35 (2006) 83−94.
  • [69] Kendig M., Jeanjaquet S., Brown R.: Rapid electrochemical assessment of paint, J. Coat. Technol., 68 (1996) 39−47.
  • [70] Chambers B. D., Taylor S. R., Kendig M. W.: Rapid discovery of corrosion inhibitors and synergistic combinations using high-throughput screening methods, Corrosion, (NACE), 61 (2005) 480−489.
  • [71]. Itoh Y., Kim I. T.: Accelerated cyclic corrosion testing of structural steels and its application to assess steel bridge coatings, Anti-Corros. Method. M., 53 (2006) 374−381.
  • [72] Deflorian F., Rossi S., Fedel M.: Organic coatings degradation: comparison between natural and artificial weathering, Corr. Sci., 50 (2008) 2360−2366.
  • [73] Baboian R.: Corrosion Tests and Standards: Application and Interpretation, 2nd ed., ASTM International, chap. 8, 131−139.
  • [74] Haynes G. S.: Cyclic Cabinet Corrosion Testing, ASTM STP 1238, Dallas 1995.
  • [75] Del Amo B., Romagnoli R., Vetere V. F.: Performance of zinc molybdenum phosphate in anticorrosive paints by accelerated and electrochemical tests, J. Appl. Electrochem., 29 (1999) 1401−1407.
  • [76] Santos D., Brites C., Costa M. R.: Performance of paint systems with polyurethane topcoats proposed for atmospheres with very high corrosivity category, Prog. Org. Coat., 54 (2005) 344−352.
  • [77] Groysman A.: Corrosion for everybody, Springer Science and Business, Dordrecht Heidelberg London New York, 2010.
  • [78] Almeida E., Santos D.: A proper way to specify new anticorrosive paint systems, Prog. Org. Coat., 29 (1996) 247−255.
  • [79] Perrin F. X., Merlatti C., Aragon E.: Degradation study of polymer coating: improvement in coating weatherability testing and coating failure prediction, Prog. Org. Coat., 64 (2009) 466−473.
  • [80] Lye R. E.: Splash zone protection on offshore platforms – a Norwegian operator's experience, Mater. Performance, 40 (2001) 40−45.
  • [81] Chandler K. A.: Marine and Offshore Corrosion, Butterworths, London 1985.
  • [82] Perez N.: Electrochemistry and Corrosion Science, Kluwer Academic Publisher, Dordrecht 2004.
  • [83] Nguyen T., Hubbard T. B., Pommersheim J. M.: Unified model for the degradation of organic coatings on steel in a neutral electrolyte, J. Coat. Technol., 68 (1996) 45−56.
  • [84] Nguyen T., Hubbart J. B., McFadden G. B.: Mathematical model for the cathodic blistering of organic coatings on steel immersed in electrolytes, J. Protec. Coat. Linings, 63 (1991) 43−52.
  • [85] Hare C. H.: Barrier coatings, J. Protect. Coat. Linings, 6 (1989) 59−66.
  • [86] Gonzalez-Guzman J., Santana J. J., Gonzalez S.: Resistance of metallic substrates protected by an organic coating containing glass flakes, Prog. Org. Coat., 68 (2010) 240−243.
  • [87] Thomas N. L.: The barrier properties of paint coatings, Prog. Org. Coat., 19 (1991) 101−121.
  • [88] Dickie R. A., Smith A. G.: How paint arrests rust, Chemtech., 7 (1980) 31−35.
  • [89] Mayne J. E. O., Scantlebury J. D.: Ionic conduction in polymer films: inhomogeneous structure of varnish films, Br. Polym. J., 2 (1970) 240−243.
  • [90] Muizebelt W. J., Heuvelsland W. J. M.: Permeabilities of model coatings: effect of crosslink density and polarity, vol. 322, Polymeric materials for corrosion control. ACS symposium, 1986, 110−114.
  • [91] Rissa K., Lepistö T., Yrjölä K.: Effect of kaolin content on structure and functional properties of water-based coatings, Prog. Org. Coat., 55 (2006) 137−141.
  • [92] Giudice C. A., Benitez J. C., Pereyra A. M.: Influence of extender type of performance of modified lamellar zinc primers, J. Coat. Technol. Res., 1 (2004) 291−304.
  • [93] Carter E.: Recent developments in micaceous iron oxide (MIO) coatings, J. Oil Color Chemists Assoc., 69 (1986) 100−112.
  • [94] Carter E.: Synthetic micaceous iron oxide: a new anticorrosive pigment, J. Oil Color Chemists Assoc., 73 (1990) 7−17.
  • [95] Miszczyk A., Darowicki K., Klenowicz Z.: Use of impedance spectroscopy to characterize lining performance in simulated flue gas desulfurization systems, Corrosion (NACE), 53 (1997) 572−580.
  • [96] Nematollahi M., Heidarian M., Peikari M., Kassiriha S. M., Arianpouya N., Esmaeilpour M.: Comparison between the effect of nanoglass flake and montmorillonite organoclay on corrosion performance of epoxy coating, Corros. Sci., 52 (2010) 1809−1817.
  • [97] Sere P. R., Armas A. R., Elsner C. I., Di Sarli A. R.: The surface condition effect on adhesion and corrosion resistance of carbon steel/ chlorinated rubber/artificial sea water systems, Corros. Sci., 38 (1996) 853−866.
  • [98] Elsner C. I., Cavalcanti E., Ferraz O., Di Sarli A. R.: Evaluation of the surface treatment effect on the anticorrosive performance of paint systems on steel, Prog. Org. Coat., 48 (2003) 50−62.
  • [99] Downey S. J., Devereux O. F.: The use of impedance spectroscopy in evaluating moisturecaused failure of adhesives and paints, Corrosion (NACE), 45 (1989) 675−684.
  • [100] Nguyen T., Bentz D., Byrd E.: A study of water at the organic coating/substrate interface, J. Coat. Technol., 66 (1994) 39−50.
  • [101] Gosselin C. A.: Effect of surface preparation on the durability of structural adhesive bonds, vol. 322, Polymeric Materials For Corrosion Control. ACS symposium, 1986, 180−193.
  • [102] Troyk P. R., Watson M. J., Poyezdala J. J.: Humidity testing of silicon polymers for corrosion control of implanted medical electronic protheses, vol.322, Polymeric Materials For Corrosion Control. ACS symposium, 1986, 299−313.
  • [103] Nguyen T., Byrd E., Bentz D.: Quantifying water at the organic/hydroxylated substrate interface, J. Adhesion, 48 (1995) 169−181.
  • [104] Funke W., Haagen H.: Empirical or scientific approach to evaluate the corrosion protective performance oforganic coatings, Ind. Eng. Chem. Prod. Res. Dev., 17 (1987) 50−63.
  • [105] Miszczyk A., Szalinska H.: Laboratory evaluation of epoxy coatings with an adhesion promoter by impedance, Prog. Org. Coat., 25 (1995) 357−363.
  • [106] Kinloch A. J., Tan K. T., Watts J. F.: Novel self-assembling silane for adhesive and adhesive applications, J. Adhesion, 82 (2006) 1117−1132.
  • [107] Wong C. K. Y., Yuen M. M. F., Xu B.: Thiol-based self-assembly nanostructures in promoting interfacial adhesion for copper-epoxy joint, Appl. Phys. Lett., 94 (2009), Article Number: 263102.
  • [108] Schrieber H. P., Qin R. Y., Sengupta A.: The effectiveness of silane adhesion promoters in the performance of polyurethane adhesives, J. Adhesion, 68 (1998) 31−39.
  • [109] Robert J., Stokes R. J., Evans D. F.: Fundamentals of Interfacial Engineering, Wiley-WCH 1997.
  • [110] Naderi R., Attar M. M.: Electrochemical study of protective behavior of organic coating pigmented with zinc aluminum polyphosphate as a modified zinc phosphate at different pigment volume concentrations, Prog. Org. Coat., 66 (2009) 314−320.
  • [111] Kalendova A., Vesely D., Sapurina I.: Anticorrosion efficiency of organic coatings depending on the pigment volume concentration of polyaniline phosphate, Prog. Org. Coat., 63 (2008) 228−237.
  • [112] Bierwagen G. P.: The physical chemistry of organic coatings revisited - viewing coatings as a materials scientist, J. Coat. Technol. Res., 5 (2008) 133−155.
  • [113] Braunshausen R. W., Baltrus R. A., Debolt L.: A review of methods of CPVC determination, J. Coat. Technol., 64 (1992) 51−65.
  • [114] Bierwagen G. P.: Critical pigment volume concentration (CPVC) as a transition point in the properties of coatings, J. Coat. Technol., 64 (1992) 71−81.
  • [115] Rodriguez M. T., Gracenea J. J., Saura J. J., Suay J. J.: The influence of pigment volume concentration (PVC) on the properties of an epoxy coating. Part II. Anticorrosion and economic properties, Prog. Org. Coat., 50 (2004) 68−79.
  • [116] Szauer T., Miszczyk A.: Improving the performance of zinc-pigmented coatings, vol. 322, ACS Symposium Series, 1986, 229−233.
  • [117] Feliu S., Morcillo M., Feliu S.: Deterioration of cathodic protection action of zinc-rich paint coatings in atmospheric exposure, Corrosion (NACE), 57 (2001) 591−597.
  • [118] Marchebois H., Keddam M., Savall C.: Zinc-rich powder coatings characterisation in artificial sea water – EIS analysis of the galvanic action, Electrochim. Acta, 49 (2004) 1719−1729.
  • [119] Jagtap R. N., Patil P. P., Hassan S. Z.: Effect of zinc oxide in combating corrosion in zinc-rich primer, Prog. Org. Coat., 63 (2008) 389−394.
  • [120] Shreepathi S., Bajaj P., Mallik B. P.: Electrochemical impedance spectroscopy investigations of epoxy zinc rich coatings: role of Zn content on corrosion protection mechanism, Electrochim. Acta, 55 (2010) 5129−5134.
  • [121] Battocchi D., Simoes A. M., Tallman D. E., Bierwagen G.: Electrochemical behaviour of a Mg-rich primer in the protection of Al alloys, Corros. Sci., 48 (2006) 1292−1306.
  • [122] Allahar K. N., Battocchi D., Orazem M. E.: Modeling of electrochemical impedance data of a magnesium-rich primer, J. Electrochem. Soc., 155 (2008) E143-E149.
  • [123] Allahar K. N., Su Q., Bierwagen G. P.: Electrochemical Noise Monitoring of the Cathodic Protection of Mg-Rich Primers, Corrosion (NACE), 66 (2010), Article Number 085003.
  • [124] Giudice C. A., Benitez J. C., Pereyra A. M.: Influence of extender type of performance of modified lamellar zinc primers, J. Coat. Technol. Res., 1 (2004) 291−303.
  • [125] Goldie B. P. F.: Anticorrosion pigments: a review, Protec. Coat. Europe, 15 (2001) 26−30.
  • [126] Zubielewicz M., Gnot W.: Mechanisms of non-toxic anticorrosive pigments in organic waterborne coatings, Prog. Org. Coat., 49 (2004) 358−371.
  • [127] Naderi R., Attar M. M.: The role of zinc aluminum phosphate anticorrosive pigment in protective performance and cathodic disbondment of epoxy coating, Corros. Sci., 52 (2010) 1291−1296.
  • [128] Bittner A., Advanced phosphate anticorrosive pigments for compliant primers, J. Coat. Technol., 61 (1989) 111−127.
  • [129] Liu W.M., Efficiency of barrier-effect and inhibitive anti-corrosion pigments in primers, Mater. Corros., 49 (1998) 576−584.
  • [130] Deschamps F., Moulin J. J., Wild P.: Mortality study among workers producing chromate pigments in France, Internat. Arch. Occupat. Environ. Health, 67 (1995) 147−152.
  • [131] Isaacs H. S., Sasaki K., Jeffcoate C. S.: Formation of chromate conversion coatings on aluminum and its alloys – An in situ XANES study, J. Electrochem. Soc., 152 (2005) B441-B447.
  • [132] Wood K. A., Gaboury S. R.: Service life prediction of colour retention for PVDF architectural coatings with organic pigments, Surf. Coat. Internat. Part B, 89 (2006) 231−235.
  • [133] Braun J. H., Cobranchi D. P.: Durability and gloss, J. Coat. Technol., 67 (1995) 55−62.
  • [134] Irigoyen M., Aragon E., Perrin F. X.: Effect of UV aging on electrochemical behavior of an anticorrosion paint, Prog. Org. Coat., 59 (2007) 259−264.
  • [135] Jacques L. F. E.: Accelerated and outdoor/natural exposure testing of coatings, Prog. Polym. Sci., 25 (2000) 1337−1362.
  • [136] Deflorian F., Rossi S., Fedrizzi L.: Testing of protective organic coatings on metals: comparison of salt spray and electrochemical impedance spectroscopy, J. Test. Eval., 31 (2003) 91−97.
  • [137] Fekete E., Lengyel B.: Accelerated testing of waterborne coatings, Prog. Org. Coat., 54 (2005) 211−215.
  • [138] Touzain S., Le Thu Q., Bonnet G.: Evaluation of thick organic coatings degradation in seawater using cathodic protection and thermally accelerated tests, Prog. Org. Coat., 52 (2005) 311-319.
  • [139] Buchheit R. G., Cunningham M., Jensen H.: A correlation between salt spray and electrochemical impedance spectroscopy test results for conversion-coated aluminum alloys, Corrosion (NACE), 54 (1998) 61−72.
  • [140] Deflorian F., Rossi S., Fedel M.: Organic coatings degradation: comparison between natural and artificial weathering, Corros. Sci., 50 (2008) 2360−2366.
  • [141] Pathak S. S., Blanton M. D., Mendon S. K.: Investigation on dual corrosion performance of magnesium-rich primer for aluminum alloys under salt spray test (ASTM B117) and natural exposure, Corros. Sci., 52 (2010) 1453−1463.
  • [142] Le Bozec N., Thierry D.: Influence of climatic factors in cyclic accelerated corrosion test towards the development of a reliable and repeatable accelerated corrosion test for the automotive industry, Mater. Corros., 61 (2010) 845−851.
  • [143] Bierwagen G., Tallman D., Li J. P.: EIS studies of coated metals in accelerated exposure, Prog. Org. Coat., 46 (2003) 148−157.
  • [144] Murray J. N.: Time constraints in the testing of salt-fogged samples via electrochemical impedance spectroscopy, Prog. Org. Coat., 49 (2004) 342−352.
  • [145] Floyd F. L., Avudaiappan S., Gibson J.: Using electrochemical impedance spectroscopy to predict the corrosion resistance of unexposed coated metal panels, Prog. Org. Coat., 66 (2009) 8−34.
  • [146] Macdonald J. R.: Impedance spectroscopy, John Wiley & Sons, New York, 1987.
  • [147] Barsoukov E., Macdonald J. R.: Impedance spectroscopy: theory, experiment, and applications, John Wiley & Sons, Hoboken, 2005.
  • [148] Orazem M. E., Tribollet B.: Electrochemical impedance spectroscopy, John Wiley & Sons, Hoboken, 2008.
  • [149] Yuan X. Z., Song C., Wang H., Zhang J.: Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications, Springer-Verlag, London, 2010.
  • [150] Irigoyen M., Aragon E., Perrin F. X.: Effect of UV aging on electrochemical behaviour of an anticorrosion paint, Prog. Org. Coat., 59 (2007) 259−264.
  • [151] Mansfeld F.: Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer-coatings, J. Appl. Electrochem., 25 (1995) 187−202.
  • [152] Mansfeld F., Han L. T., Lee C. C.: Evaluation of corrosion protection by polymer coatings using electrochemical impedance spectroscopy and noise analysis, Electrochim. Acta, 43 (1998) 2933−2945.
  • [153] Deflorian F., Rossi S., Bonora P. L.: Advanced testing procedures for high performance coatings, J. Coat. Technol., 72 (2000) 81−87.
  • [154] Hinderliter B. R., Croll S. G., Tallman D. E., Bierwagen G. P.: Interpretation of EIS data from accelerated exposure of coated metals based on modeling of coating physical properties, Electrochim. Acta, 51 (2006) 4505−4515.
  • [155] Bierwagen G., Allahar K., Hinderliter B.: Ionic liquid enhanced electrochemical characterization of organic coatings, Prog. Org. Coat., 63 (2008) 250−259.
  • [156] Macedo M. C. S. S., Margarit-Mattos I. C. P., Fragata F. L.: Contribution to a better understanding of different behaviour patterns observed with organic coatings evaluated by electrochemical impedance spectroscopy, Corros. Sci., 51 (2009) 1322−1327.
  • [157] Itagaki M., Ono A., Watanabe K.: Analysis on organic film degradation by dynamic impedance measurements, Corros. Sci., 48 (2006) 3802−3811.
  • [158] Mahdavian M., Attar M. M.: Another approach in analysis of paint coatings with EIS measurement: Phase angle at high frequencies, Corros. Sci., 48 (2006) 4152−4157.
  • [159] Rout T. K.: Electrochemical impedance spectroscopy study on multi-layered coated steel sheets, Corros. Sci., 49 (2007) 794−817.
  • [160] Lendvay-Gyorik G., Pajkossy T., Lengyel B.: Water uptake of water-borne paint resin films as studied by impedance spectroscopy and gravimetry, Prog. Org. Coat., 59 (2007) 95−99.
  • [161] Meroufel A., Touzain S.: EIS characterisation of new zinc-rich powder coatings, Prog. Org. Coat., 59 (2007) 197−205.
  • [162] Akbarinezhad E., Neshati J., Rezaei F.: Investigation on organic pipeline coating effectiveness via electrochemical impedance spectroscopy, Surf. Eng., 23 (2007) 380−383.
  • [163] Gonzalez-Garcia Y., Gonzalez S., Souto R. M.: Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection, Corros. Sci., 49 (2007) 3514−3526.
  • [164] Deflorian F., Felhosi I.: Electrochemical impedance study of environmentally friendly pigments in organic coatings, 59 (2003) 112−120.
  • [165] Rodriguez M. T., Gracenea J. J., Garcia S. J.: Testing the influence of the plasticizers addition on the anticorrosive properties of an epoxy primer by means of electrochemical techniques, Prog. Org. Coat., 50 (2004) 123−131.
  • [166] Zhang F., Liu J. J., Li X. Y.: Study of degradation of organic coatings in seawater by using EIS and AFM methods, J. Appl. Polym. Sci., 109 (2009) 1890−1899.
  • [167] Naderi R., Attar M. M.: EIS and ENM as tools to evaluate inhibitive performance of second generation of phosphate-based anticorrosion pigments, J. Appl. Electrochem., 39 (2009) 2353−2358.
  • [168] Kendig M., Scully J.: Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals, Corrosion (NACE), 46 (1990) 22–29.
  • [169] Scully J., Hensley S. T.: Lifetime prediction for organic coatings on steel and a magnesium alloy using electrochemical impedance methods, Corrosion (NACE), 50 (1994) 705–716.
  • [170] Vreijling M. P. W., van Westing E. P. M., Ferrari G. M., van der Weijde D. H., de Wit J. H. W.: Application of electrochemical impedance measurements in the determination of the service life of organic coatings, Proceedings of Electrochem. Soc. (Advances in Corrosion Protection by Organic Coatings II), Vol. 95–13, 1995, 193–210.
  • [171] van der Weijde D. H., van Westing E. P. M., Ferrari G. M., de Wit J. H. W.: Lifetime prediction of organic coatings with impedance spectroscopy. Polym. Mater. Sci. Eng., 74 (1996) 12–16.
  • [172] Scully J. R.: Electrochemical impedance of organic-coated steel: correlation of impedance parameters with long-term coating deterioration, J. Electrochem. Soc., 136 (1989) 979–990.
  • [173] Shreepathi S., Guin A. K., Naik S. M., Vattipalli M. R.: Service life prediction of organic coatings: electrochemical impedance spectroscopy vs actual service life, J. Coat. Technol. Res., 8 (2011) 191–200.
  • [174] Chen C. T., Skerry B. S.: Assessing the corrosion-resistance of painted steel by AC impedance and electrochemical noise techniques, Corrosion (NACE), 47 (1991) 598−611.
  • [175] Mansfeld F., Lee C. C., Zhang G.: Comparison of electrochemical impedance and noise data in the frequency domain, Electrochem. Acta, 43 (1998) 435−438.
  • [176] Mills D. J., Mabbutt S.: Investigation of defects in organic anti-corrosive coatings using electrochemical noise measurement, Prog. Org. Coat., 39 (2000) 41−48.
  • [177] Su Q., Allahar K., Bierwagen G.: Embedded electrode electrochemical noise monitoring of the corrosion beneath organic coatings induced by ac-dc-ac conditions, Electrochim. Acta, 53 (2008) 2825−2830.
  • [178] Mansfeld F., Han L. T., Lee C .C., Chen C., Zhang G., Xiao H.: Analysis of electrochemical impedance and noise data for polymer coated metals, Corros. Sci., 39 (1997) 255−263.
  • [179] Watts J. F.: Mechanistic aspects of the cathodic delamination of organic coatings, J. Adhesion, 31 (1989) 73−85.
  • [180] Sorensen P. A., Kiil S., Dam-Johansen K., Weinell C. E.: Anticorrosive coatings: a review, J. Coat. Technol. Res., 6 (2009) 135−176.
  • [181] Pourbaix M.: Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, London 1966.
  • [182] Morcillo M.: Soluble salts: their effect on premature degradation of anticorrosive paints, Prog. Org. Coat., 36 (1999) 137−147.
  • [183] de la Fuente D., Bohm M, Houyoux C., Rohwerderd M., Morcillo M.: The settling of critical levels of soluble salts for painting, Prog. Org. Coat., 58 (2007) 23−32.
  • [184] Romhild S., Bergman G., Hedenqvist M. S.: Short-term and long-term performance of thermosets exposed to water at elevated temperatures, J. Appl. Polym. Sci., 116 (2010) 1057−1067.
  • [185] Meteorological data from Internet Weather Station at Warsaw University of Technology, Faculty of Electronics and Information Technology: ftp://nms.ise.pw.edu.pl/meteo/meteo/
  • [186] Haynes G., Cabinet, in: Corrosion Tests and Standards: Application and Interpretation, Baboian, R. (Ed.), ASTM Manual Series: MNL 20, Philadelphia, 1995, 91.
  • [187] Alblas, B. P., Kettenis, J. J.: Prot. Coat. Europe, 5 (2000) 49−58.
  • [188] Antoniewicz J.: Właciwoci dielektryków, WNT, Warszawa 1971.
  • [189] Taylor R. E.: Thermal expansion of solids, ASM International, Materials Park, Ohio (USA), 1998.
  • [190] Dorkenoo K. D., Pfromm P. H.: Experimental evidence and theoretical analysis of physical aging in thin and thick amorphous glassy polymer films, J. Polym. Sci. Part B Phys., 37 (1999) 2239−2247.
  • [191] Davis W. J., Pethrick R. A.: Investigation of physical ageing in polymethylmethacrylate using positron annihilation, dielectric relaxation and dynamic mechanical thermal analysis, Polymer, 39 (1998) 255−266.
  • [192] Cowie J. M. G. Ferguson R., Harris S., McEwen I. J.: Physical ageing in poly(vinyl acetate) – 33. Structural relaxation and its effect on the stress relaxation modulus, Polymer, 39 (1998) 4393−4397.
  • [193] Xiaowei L., Hristov H. A., Yee A. F., Gidley D. W.: Influence of cyclic fatigue on the mechanical properties of amorphous polycarbonate, Polymer 36 (1995) 759−765.
  • [194] Nichols M. E., Darr C. A., Smith C. A., Thouless M. D., Fischer E. R.: Fracture energy of automotive clearcoats – I. Experimental methods and mechanics, Polym. Degrad. Stab. 60 (1998) 291−299.
  • [195] Lee H., Krishnaswamy S.: Quasi-Static Propagation of Subinterfacial Cracks, J. Appl. Mech.,- Trans. of the ASME 67 (2000) 444−453.
  • [196] Nguyen T., Hubbard J. B., Pommersheim J. M.: Unified model for the degradation of organic coatings on steel in a neutral electrolyte, J. Coat. Technol. 68 (1996) 45−56.
  • [197] Kendig M., Jeanjaquet, Brown R., Thomas F.: Rapid electrochemical assessment of paint, J. Coat. Technol. 68 (1996) 39−47.
  • [198] Bierwagen G. P., He L., Li J., Ellingson L., Tallman D. E.: Studies of a new accelerated evaluation method for coating corrosion resistance – thermal cycling testing, Prog. Org. Coat., 39 (2000) 67−78.
  • [199] Perera D. Y., Eynde D. V.: Moisture and temperature inducted stresses (hygrothermal stresses) in organic coatings, J. Coat. Technol., 59 (1987) 55-63.
  • [200] De Wit J. H. W.: Characterisation of organic coatings with impedance spectroscopy, 12th International Corrosion Congress, September 19–24, 1993, Houston, Texas, USA, vol.1, 420−448.
  • [201] Boerman A. E., Perera D. Y.: Measurement of stress in multicoat systems, J. Coat. Technol., 70 (1998) 69−75.
  • [202] Deflorian F., Fedrizzi L.: Adhesion characterization of protective organic coatings by electrochemical impedance spectroscopy, J. Adhesion Sci. Technol., 13 (1999) 629−645.
  • [203] Leng A., Streckel H., Stratmann M.: The delamination of polymeric coatings from steel. Part 1. Calibration of the Kelvinprobe and basic delamination mechanism, Corros. Sci., 41 (1999) 547−578.
  • [204] Deflorian F., Rossi S., Bonora P. L.: Advanced testing procedures for high performance coatings, J. Coat. Technol., 72 (2000) 81−87.
  • [205] Piens M., De Deurwaerder H.: Effect of coating stress on adherence and on corrosion prevention, Prog. Org. Coat., 43 (2001) 18−24.
  • [206] Deflorian F., Rossi S.: The role of ions diffusion in the cathodic delamination rate of polyester coated phosphatized steel, J. Adhesion Sci. Technol., 17 (2003) 291−306.
  • [207] Bajat J. B., Dedic O.: Adhesion and corrosion resistance of epoxy primers used in the automotive industry, J. Adhesion Sci. Technol., 21 (2007) 819−831.
  • [208] Bajat J. B., Miskovic-Stankovic V. B., Popic J. P.: Adhesion characteristics and corrosion stability of epoxy coatings electrodeposited on phosphated hot-dip galvanized steel, Prog. Org. Coat., 63 (2008) 201−208.
  • [209] Graham J. C., Gloskey D. A., Fisher T. G.: Effect of temperature and relative-humidity on intercoat adhesion failure of aliphatic amine cured epoxy coatings, J. Coat. Technol., 60 (1988) 35−39.
  • [210] Hinder S. J., Lowe C., Maxted J. T.: Intercoat adhesion failure in a multilayer organic coating system: An X-ray photoelectron spectroscopy study, Prog. Org. Coat., 54 (2005) 20−27.
  • [211] Dannenberg H.: Measurement of adhesion by a blister method, J. Polym. Sci., 33 (1958) 509−510.
  • [212] Wang C.: Measurements of interfacial strength from the blister test, J. Appl. Polym. Sci., 73 (1999) 1899−1907.
  • [213] Juss K., Mertiny P.: Assessment of adhesion between polyurethane liner and epoxy based substrate: Methodology and experiment, Polym. Test., 28 (2009) 764–769.
  • [214] Jensen H. M., Thouless M. D.: The blister test for interface toughness measurement. Eng. Fract. Mech. 40 (1991) 475–486.
  • [215] Mittal K. L.: Adhesion measurement films and coatings, VSP 1995.
  • [216] Volinsky A. A., Moody N. R., Gerberich W. W.: Interfacial toughness measurements for thin films on substrates, Acta Mater., 50 (2002) 441−466.
  • [217] Kappesa M., Frankela G. S., Sridharb N.: Adhesion and adhesion degradation of a pressure sensitive tape on carbon steel, Prog. Org. Coat., 69 (2010) 57–62.
  • [218] Miszczyk A., Schauer T.: Non-destructive adhesion control, Europ. Coating J., 6 (2004) 26-33.
  • [219] Miszczyk A., Darowicki K.: Evaluation of coating systems using impedance spectroscopy, Polish J. Environ. Stud., 14 (2005), Sup. I, 176−179.
  • [220] Femm 4.2 – Manual
  • [221] Bordzilowski J., Darowicki K., Krakowiak S., Krolikowska A.: Impedance measurements of coating properties on bridge structures, Prog. Org. Coat., 46 (2003) 216–219.
  • [222] Bierwagen G. P., Tallman D. E. T.: Choice and measurement of crucial aircraft coatings system properties, Prog. Org. Coat., 41 (2001) 201−216.
  • [223] Krakowiak S., Darowicki K.: Inspection of rubber linings operating in flue gas desulphurisation units, Prog. Org. Coat. 46(3) (2003) 211−215.
  • [224] Fedrizzi L., Rodrigue F. J., Rossi S., Deflorian F.: Corrosion study of industrial painting cycles for garden furniture, Prog. Org. Coat., 46 (2003) 62−73.
  • [225] Tahmassebi N., Moradian S., Mirabedini S. M.: Evaluation of the weathering performance of basecoat/clearcoat automotive paint systems by electrochemical properties measurements, Prog. Org. Coat., 54 (2005) 384−389.
  • [226] Tait W. S.: Coping with errors in electrochemical impedance spectroscopy data from coated metals, J. Coat. Technol., 66 (1994) 59−61.
  • [227] Feliu S., Morcillo M., Feliu S.: The reproducibility of impedance parameters obtained for painted specimens, Prog. Org. Coat., 25 (1995) 365−377.
  • [228] Jolliffe I. T.: Principal component analysis, 2nd ed., Springer, New York, 2002.
  • [229] Gemperline P. (ed.): Practical guide to chemometrics, 2nd ed., CRC Press, Boca Raton, FL, 2006.
  • [230] Brereton R. G.: Applied chemometrics for scientist, John Wiley & Sons, Chichester, 2007.
  • [231] Varmuza K., Filzmoser P.: Introduction to multivariate statistical analysis in chemometrics, CRC Press, Taylor & Francis Group, Boca Raton London New York, 2008.
  • [232] Mazerski J.: Chemometria praktyczna – interpretuj wyniki swoich pomiarów, wyd. Malamut 2009.
  • [233] Shimoyama M., Matsukawa K. Inoue H.: Non-destructive analysis of photodegradation of poly(methyl methacrylate) by near infrared light-fibre spectroscopy and chemometrics, J. Near Infrared Spec., 7 (1999) 27−32.
  • [234] Liu Y. L., Barton F. E., Lyon B. G.: Variations of large spectral sets; two-dimensional correlation analysis of loadings spectra of principal component analysis, J. Near Infrared. Spec., 11 (2003) 457−466.
  • [235] Marengo E., Liparota M. C., Robotti E.: Monitoring of pigmented surfaces in accelerated ageing process by ATR-FT-IR spectroscopy and multivariate control charts, Talanta, 66 (2005) 1158−1167.
  • [236] Lavine B., Workman J.: Chemometrics, Anal. Chem., 78 (2006) 4137−4145.
  • [237] Cheng F., Gamble L. J., Grainger D. W.: X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and principal component analysis of the hydrolysis, regeneration, and reactivity of N-hydroxysuccinimide-containing organic thin films, Anal. Chem., 79 (2007) 8781−8788.
  • [238] Berrueta L. A., Alonso-Salces R. M., Heberger K.: Supervised pattern recognition in food analysis, J. Chromatogr. A, 1158 (2007) 196−214.
  • [239] Xu L., Tang L. J., Cai C. B.: Chemometric methods for evaluation of chromatographic separation quality from two-way data – a review, Anal. Chim. Acta, 613 (2008) 121−134.
  • [240] Alessio P., Ferreira D. M., Job A. E.: Fabrication, structural characterization, and applications of Langmuir and Langmuir-Blodgett films of a poly(azo)urethane, Langmuir, 24 (2008) 4729−4737.
  • [241] Pereira F. M. V., Bueno M. I. M. S.: Evaluation of varnish and paint films using digital image processing, energy dispersive X-ray fluorescence spectrometry, and chemometric tools, J. Coat. Technol. Res., 6 (2009) 445−455.
  • [242] Rosi F., Daveri A., Miliani C.: Non-invasive identification of organic materials in wall paintings by fiber optic reflectance infrared spectroscopy: a statistical multivariate approach, Analytical and Bioanalytical Chem., 395 (2009) 2097−2106.
  • [243] Navas N., Romero-Pastor J., Manzano E.: Raman spectroscopic discrimination of pigments and tempera paint model samples by principal component analysis on first-derivative spectra, J. Raman Spectroscopy, 41 (2010) 1196−1203.
  • [244] Fonville J. M., Richards S. E., Barton R. H.: The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping, J. Chemometrics, 24 (2010) 636−649.
  • [245] Shinzawa H., Awa K., Kanematsu W.: Multivariate data analysis for Raman spectroscopic imaging, J. Raman Spectroscopy, 40 (2009) 1720−1725.
  • [246] de Oliveira L., Antunes A. M., Bueno M. I. M. S.: Direct chromium speciation using X-ray spectrometry and chemometrics, X-ray Spectro., 39 (2010) 279−284.
  • [247] Lavine B., Workman J.: Chemometrics, Anal. Chem., 82 (2010) 4699−4711.
  • [248] Lee J. H., Choung M. G.: Nondestructive determination of herbicide-resistant genetically modified soybean seeds using near-infrared reflectance spectroscopy, Food Chem., 126 (2011) 368−373.
  • [249] Miszczyk A.: Kontrola stanu wykładzin przeciwkorozyjnych przy zastosowaniu spektroskopii mikrofalowej i metod chemometrycznych, Ochrona p. korozj, 54 (2011) 94−99.
  • [250] Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Shimohigoshi M., Watanabe T.: Light-induced amphiphilic surfaces, Nature, 388 (1997) 431−432.
  • [251] Mahdawian M., Attar M. M.: Evaluation of zinc phosphate and zinc chromate effectiveness via DC and AC method, Prog. Org. Coat., 53 (2005) 191−194.
  • [252] Bastos A. C., Ferreira M. G. S., Simoes A. M.: Comparative electrochemical studies of zinc chromate and zinc phosphate as corrosion inhibitors for zinc, Prog. Org. Coat., 52 (2005) 339−350.
  • [253] Goldman A.: Modern ferrite technology, 2nd ed. Springer, New York 2006.
  • [254] Abu Ayana Y. M., El-Sawy S. M., Salah S. H.: Zinc-ferrite pigment for corrosion protection, Anti-Corros. Method. M., 44 (1997) 381−8.
  • [255] Chung D. D. L.: Materials for electromagnetic interference shielding, J. Mat. Eng. Perform., 9 (2000) 350−354.
  • [256] Gheeta S., Sathees Kumar K. K., Rao C. K. K., Vijan M., Trivedi D. C.: EMI schielding: methods and materials – a review, J. Appl. Polym. Sci., 112 (2009) 2073−2086.
  • [257] Kalendova A.: Alkalising and neutralizing effects of anticorrosive pigments containing Zn, Mg, Ca and Sr cations, Prog. Org. Coat., 38 (2000) 199−206.
  • [258] Kalendova A., Vesely D.: The properties of ZnFe2O4 as an anticorrosion pigment dependent upon the structure of initial Fe2O3, Anti-Corros. Method. M., 55 (2008) 175−190.
  • [259] Ahmed M. A., Okasha N., El-Del S. I.: Preparation and characterization of nanometric Mn ferrite via different methods, Nanotechnology, 19 (2008) 230−238.
  • [260] Wang Y., Jing X.: Intrinsically conducting polymers for electromagnetic interference shielding, Polym. Advan. Technol., 16 (2005) 344−51.
  • [261] Vinoy K. J. Jha R. M.: Radar Absorbing materials: from theory to design and characterization, Kluwer Academic Publishers, Boston 1996.
  • [262] Saville P.: Review of radar absorbing materials, Defence R&D Canada – Atlantic Defence, Technical Memorandum, DRDC Atlantic TM 2005-003, January 2005.
  • [263] Chen L. F., Ong C. K., Neo C. P., Varadan V. V., Varadan V. K.: Microwave Electronics. Measurement and Materials Characterization, Wiley, Chichester 2004.
  • [264] Yuan H., Xiao G., Cao M. S.: A novel method of computation and optimization for multilayered radar absorbing coatings using open source software, Mater. Design, 27 (2006) 45−52.
  • [265] Jung W. K., Ahn S. H.: Fabrication of radar absorbing structure and evaluation of radar cross section: Case study of hybrid shells, J. Compos. Mater., 41 (2007) 1375−1387.
  • [266] O'Keefe E.: Energy efficient paints ... Using stealth technology, J. Coat. Technol. Res., 4 (2007) 26−27.
  • [267] Ohlan A., Singh K., Chandra A.: Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4-18 GHz, Appl. Phys. Lett., 93 (2008) Article Number: 053114.
  • [268] Pinto J., Matthews J. C. G., Sarno G. C.: Stealth technology for wind turbines, IET Radar Sonar Navig., 4 (2010) 126−133.
  • [269] Lagarkov A. N., Rozanov N.: High-frequency behavior of magnetic composites, J. Magn. Magn. Mater., 321 (2009) 2082−2092.
  • [270] Cui T. J., Smith D. R., Liu R.: Metamaterials: theory, design, and applications, Springer, New York Dordrecht Heidelberg London, 2010.
  • [271] Capolino F.: Applications of metamaterials, Taylor and Francis, 2009.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0063-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.