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Abstract 

 
We show that a upside-down bathtub failure rate function can be obtained from a mixture of two increasing 

failure rate function (IFR) models. Specifically, we study the failure rate of the mixture an exponential 

distribution, and an IFR distribution with strictly increasing failure rate function. Examples of several other 

upside-down bathtub shaped failure rate functions are also presented. The method are illustrated by a numerical 

example of the time between the failures for the bus engines.    
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1. Introduction 

 

The distributions with non-monotonic failure rate functions are considered frequently in 

the reliability theory and practice. The distributions with a bathtub shape failure functions 

(BFR) belong to such a class of distributions. The models with BFR are very useful in the 

reliability theory and practice. We give the definition of a bathtub shape failure rate function 

below. It is useful, throughout his paper by increasing or decreasing, understood respectively 

as non – decreasing or non – increasing. 

Definition 1: A lifetime T, with failure rate function r(t) is said to have a bathtub shaped 

failure rate if there exists t
*
 such that 0 < t

*
< ∞  and r(t) is decreasing for 0 ≤ t ≤ t* and r(t) is 

increasing for t > t
*
. 

A brief discussion and summary for such distributions are given in [1] and [12]. However, 

there are known many examples of applications of distributions with upside-down bathtub 

shaped (unimodal) failure rate functions (UBFR). In particular cases, the unimodal failure rate 

function is  used in [9] for data of motor bus failures, in [1] and [4] for optimal burn decisions, 

and in [5] and [7] for ageing property in reliability.  

One of the ways of generating distributions with non-monotone failure rate functions is 

mixing the standard distributions. It is well known result that the mixture of distributions with 

a decreasing failure rate functions (DFR) has a decreasing failure rate function (see Prochan 

[11] ). Klutke et al. [8] have been studied the mixture of two Weibull distributions and they 

suggested that this mixture can be the distribution with unimodal failure rate function. 

However, in [13], it is stated that the considered mixture  failure rate function has a 



 

decreasing initial period. The mixture of the two Weibull distributions has also been studied 

in [14]. For the same values of scale parameter all possible types of shape failure rate function 

are found. However, for the different scale parameter the numerical computing is performed. 

Block et al. [3] have been studied the mixture of two distributions with increasing linear 

failure rate functions.  

The paper is organized as follows. In Section 2, the model of the mixture of two 

distributions is introduced and discussed, while, in Section 3, the particular cases are 

considered. In last section   the numerical examples with technical data are presented. 

  

2. The model of mixture distributions 

 

We consider a mixture of two lifetime T1, T2 with densities f1(t), f2(t), with corresponding 

reliability functions  R1(t), R2(t), failure rate function r1(t), r2(t) and weights p and q = 1 – p, 

where 0 < p < 1. The mixed density is then written as 

 

                             f (t) = p f1(t) + (1 – p) f2(t) 

 

and mixed reliability functions is 

 

                             R (t) = p R1(t) + (1 – p) R2(t) 

 

The failure rate function of the mixture can be written as the mixture [2] 

 

                            r(t) = ω (t) r1(t) + [1 – ω(t)] r2(t) 

 

where  ω (t) = pR1(t) / R(t). Moreover, from [2], we have under some mild conditions, that 
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In the following propositions, we give some properties for the mixture failure rate function. 

 

Proposition 1: For the first derivative of  ω (t), we have 

 

                        ω’(t) = ω (t) (1 – ω(t) ) ( r2(t) – r1(t) ) 

 

Proposition 2: For the first derivative of   r(t), we obtain 

 

                 r’(t) = (1 – ω(t) ) ((–ω(t) ( r2(t) – r1(t) )
2
 + r’2(t) ) + ω(t) r’1(t) 

 

Proposition 3: If  R1(t) = exp (–λ1t ), then 

   

         r’(t) = ( 1 – ω(t)) ((–ω(t)( r2(t) – λ1)
2
 + r’2(t) )  

 

Proposition 4: If  R1(t) = exp (–λ1t ), then r’ (0) ≥ 0 if and only if 

 

                     r’2(0) ≥ p (r2(0) – λ1 )
2
 

 

We suppose that r2 (t) = γt + αt
α-1

/ β
α
 , where α ≥ 1. The reliability function R2(t) is a particular 

case of the reliability function given by Gurwich [6] (see also [10]).Without loss generality, 



 

we assume that  β = 1. Hence r2(0) = 0  for α > 1.Consequently, the reliability function of 

corresponding toT2 is 

 

                   R2(t) = exp( –½ γ t
2
 – t

α
 )   for  t ≥ 0. 

 

   Let h1(t) = ω(t) (r2(t) – λ1 )
2
, h2(t) = r’2(t). Since ω(t) ≥ 0 for t ≥ 0 and  r2(t) is increasing 

from  0 to ∞, and ω(0) = p, ω(∞) = 1, we conclude, that the equation h1(t) = 0 has only one 

solution t1. We can also examine the ratio of the function h1(t) and  h2(t), i.e. 

                        
 )t(h

)t(h
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2

1

t
   

Since there are t’ such that, for all t > t’, we have h1(t) > h2(t), where as, we have  

h1(t1) = 0 < h2(t1). Hence the equation  h(t) = h1(t) – h2(t) = 0 has at least one solution. 

 

3.  The particular case of mixture 

 

   We shall give the conditions under which the failure rate of the mixture of an exponential 

distribution and the distribution with failure rate r2 (t) has an UBFR. In this section, we 

consider three particular cases of a failure rate r2 (t). 

 

Proposition 5:  If   2 ≤ α ≤ 6 and p λ1
2
 ≤ γ then r (t)  UBFR. 

 

Proof: It is know that the equation h (t) = 0 has at least one a solution for t > t1. We consider 

the ratio 

                      u (t) =
)t('r
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It is easy that u (t1) =0 and  
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. For the first derivative, we have 
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Let u1(t) = 2 [r’2(t)]
2
 – r’’2(t) (r2(t) – λ1) and  

 

      u1(t) = 2γ
2
 + γα(α – 1)t

α-2
(6 – α) + α

3
(α – 1)t 

2α – 4 
+ λ1α(α – 1) (α – 2)t

α -3
 

 

If   2 ≤  α ≤ 6  then  u1(t) > 0  and  u’(t) > 0  for  t  ≥  t1. 

 

By Proposition 1  ω(t) is increasing for  t  ≥  t1  and  ω(t) u(t)  is increasing for  t  ≥  t1. Hence   

the equation h (t) = 0 has only one solution and r(t)  UBFR. 

   

4. The numerical examples 

 

   In this section, we consider four examples to illustrate the theoretical research given in the 

previous sections. 

Example 1: We consider the exponential distribution with failure rate function  r1(t) = λ1 = 1   

and Gurvich distribution given in the section  II  with parameters  β = 1, γ = 1,  α  { 2.5, 3, 4, 

5, 6}and mixing proportion p = 0.8. Thus r(t) have an upside – down bathtub shaped. Figure 1  

shows the five plots of  r(t). 
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Fig. 1.  Mixture failure rate of exponential and Gurwich distribution for 

α  {2.5, 3, 4, 5, 6}  with  UBFR  shape 

 

Example 2:  We consider two failure rate functions  namely r1(t) = λ = 1  and  a failure rate of 

Gurwich distribution with α = 2, β = 1, γ  { 2, 3, 4, 5, 6 }. The mixing proportion p = 0.8. 

Figure 2 shows the plots of   r(t) for different values of parameter γ. 
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Fig. 2.  Mixture failure rate of exponential and IFR distribution for γ {2, 3, 4, 5, 6}, 

with UBFR shape 

 



 

Example 3: In this example, we consider the mixture of exponential distribution with λ = 2 

and Gurwich distribution with α = 3, β = 1 and p  {0.4, 0.3, 0.2, 0.15, 0.1}. Figure 3 

contains five plots of failure rate functions for different values of p. 
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Fig. 3. Mixture of exponential distribution and Gurwich distribution for  p  {0.4, 0.3, 0.2, 0.15, 0.1} 

 

Example 4:  In this example, we consider a real lifetime data. The object of the investigation 

is a real municipal bus transport system within a large agglomeration. The analyzed system 

operates and maintains 210 municipal buses of various marks and types. For the investigation 

purpose, 35 buses of the same make were selected. The data set contains  n = 1081  times 

between successive failures of the engine of the bus. We estimate the parameters p, α, γ, β, λ 

of the model with the reliability function 

                       R(t) = p exp (–λt)  + (1 – p) exp (– 0.5 γt
2
 – (t / β)

α
)   

By maximizing the logarithm of likelihood function for grouped data, we calculate p =0.76,  

α=2.71, γ =15.56, β= 99.03, λ=0.082. For these values of parameters, we prove Pearson’s test 

of fit and compute associated p–value is 0.46. The reliability function R(t) sufficiently 

precisely describes the empirical reliability function. By Proposition 5, we conclude that the 

failure rate is UBFR. 

  

5. Conclusions 

 

    Sometimes, we have upside-down bathtub estimated failure rates from model which do not 

have theoretical UBFR. In this paper we ha ve presented flexible and practical model for 

UBFR. The purpose of this paper is to present a new UBFR as a mixture of two distributions 

for the first time. The model of UBFR presented in this paper is fully adaptive to the available 

failure data and this distributions gives reliability engineers and biostatisticians another option 

for modeling the lifetime. The numerical examples for life time of an engine system of a bus 

shows that the mixture can be useful to practical applications.   
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