Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 8, nr 4(18) | 35-54
Tytuł artykułu

Coatings in Arthroplasty: Review Paper

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The modern coatings used in arthroplasty for long term implants are reviewed. The phosphate coatings are the most popular technique to improve the bone-implant interfacial strength and promote the osseointegration. The plasma spraying, electrophoretic precipitation, powder metallurgy, ion beam sputtering, high velocity oxy-fuel (HVOF) combustion spraying, sol-gel technique, biomimetic deposition are mostly used to obtain the phosphate, usually hydroxyapatite coatings. The composite coatings based on HA are proposed to improve biochemical and mechanical properties. The Ti, Ti alloys, titania, zirconia, zinc particles and glasses are suggested to strengthen the HA matrix, and some organic compounds and polymers to improve the biochemical behaviour. Among another coatings, titania, zirconia, aluminia, carbon and organic, glass – ceramics and titania – silicate coatings are mostly proposed.
Słowa kluczowe
Wydawca

Rocznik
Strony
35-54
Opis fizyczny
Bibliogr. 91 poz.
Twórcy
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Mechanical Engineering and Materials Strength, 80-952 Gdańsk, Poland
Bibliografia
  • 1. Tsui Y.C., Doyle C., Clyne T.W.: Plasma sprayed hydroxyapatite coatings on titanium substrates. Part I: Mechanical properties and residual stress levels. Biomaterials 19 (1998) 2015-2029.
  • 2. Tsui Y.C., Doyle C., Clyne T.W.: Plasma sprayed hydroxyapatite coatings on titanium substrates. Part II: optimisation of coatings properties. Biomaterials 19 (1998) 2015-2029.
  • 3. Rice J.M., Hunt J.A. Gallagher J.A.: Quantitative evaluation of the biocompatible and osteogenic properties of a range of biphasic calcium phosphate (BC) granules using primary cultures of human osteoblasts and monocytes. Calcified Tissue International 72, 2003, 726-736.
  • 4. Habibovic P., Li J., van der Walk C.M., Meijer G., Layrolle P., van Blitterswijk C.A., de Grott K.: Biological performance of uncoated and octacalcium phosphate coated Ti6Al4V. Biomaterials 28 (2007) 4209-4218.
  • 5. Leadley S.R., Davies M.C., Castro Ribeiro C., Barbosa M.A., Paul A.J., Watts J.F.: Investigation of the dissolution of the bioceramic hydroxyapatite in the presence of titanium ions using ToF-SIMS and XPS. Biomaterials 18 (1997) 311-316.
  • 6. Ozawa S., Kasugai S.: Evaluation of implant materials (hydroxyapatite, glassceramics, titanium) in a rat bone marrow stromal cell culture. Biomaterials 17 (1996) 23-29.
  • 7. Liu D.-M., Yang Q., Troczynski T.: Sol-gel hydroxyapatite coatings on stainless steels substrates. Biomaterials 23 (2002) 691-698.
  • 8. Miyazaki T., Kim H.-M., Kokubo T., Ohtsuki C., Kato H., Nakamura T.: Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid. Biomaterials 23 (2002) 827-832.
  • 9. Uchida M., Kim H.-M., Miyaji F., Kokubo T., Nakamura T.: Apatite formation on zirconium metal treated with aqueous NaOH. Biomaterials 23 (2002) 313-317.
  • 10. Ong J.L., Carnes D.L., Bessho K.: Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Biomaterials 25 (2004) 4601-4606.
  • 11. Porter A., Taak P., Hobbs L.W., Coathup M.J., Blunn G.W., Spector M.: Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy. Biomaterials 25 (2004) 5199-5208.
  • 12. Gross K.A., Walsh W., Swarts E.: Analysis of retrieved hydroxyapatite-coated hip protheses. Journal of Thermal Spray Technology, 13 (2), 2004, 191-199.
  • 13. Yoshinari M., Oda Y., Inoue T., Matsuzaka K., Shimono M.: Bone response to calcium phosphate-coated and biphosphonate-immobilized titanium implants. Biomaterials 23 (2002) 2879-2885.
  • 14. Nguyen H.Q., Deporter D.A., Pilliar R.M., Valiquette N., Yakubovich R.: The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants. Biomaterials 25 (2004) 865-876.
  • 15. Queiroz A.C., Santos J.D., Vilar R., Eugénio S., Monteiro F.J.F.J.: Laser surface modification of hydroxyapatite and glass-reinforced hydroxyapatite. Biomaterials 25 (2004) 4607-4614.
  • 16. Mano T., Ueyama Y., Ishikawa K., Matsumura T., Suzuki K.: Initial tissue response to a titanium implant coated with apatite at room temperature using a blast coating method. Biomaterials 23 (2002) 1931-1936.
  • 17. Lynn A.K., DuQuesnay D.L.: Hydroxyapatite-coated Ti-6Al-4V. Part I: the effect of coating thickness on mechanical fatigue behaviour. Biomaterials 23 (2002) 1937-1946.
  • 18. Lynn A.K., DuQuesnay D.L.: Hydroxyapatite-coated Ti-6Al-4V. Part II: the effect of post-deposition heat treatment at low temperatures. Biomaterials 23 (2002) 1947-1953.
  • 19. Yang Y.C., Chang E.: Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate. Biomaterials 22 (2001) 1827-1836.
  • 20. Yang Y.C., Chang E., Hwang B.H., Lee S.Y.: Biaxial residual stress states of plasma-sprayed hydroxyapatite coatings on titanium alloy substrate. Biomaterials 21 (2000) 1327-1337.
  • 21. Yang Y., Kim K.-H., Agrawala C., Ong J.L. (2004): Interaction of hydroxyapatite-titanium at elevated temperature in vacuum environment. Biomaterials, 25, 2927-2932.
  • 22. Kurzweg H., Heimann R.B., Troczynski T., Wayman M.L.: Development of plasma-sprayed bioceramic coatings with bond coats based on titania and zirconia. Biomaterials 19 (1998) 1507-1511.
  • 23. Cabrini M., Cigada A., Rondelli G., Vicentini B.: Effect of different surface finishing and of hydroxyapatite coatings on passive and corrosion current of Ti6Al4V alloy in simulated physiological solution. Biomaterials 18 (1997) 783-787.
  • 24. Zhang C., Leng Y., Chen J.: Elastic and plastic behavior of plasma-sprayed hydroxyapatite coatings on a Ti-6Al-4V substrate. Biomaterials 22 (2001) 1357-1363.
  • 25. Heimann R.B., Wirth R.: Formation and transformation of amorphous calcium phosphates on titanium alloy surfaces during atmospheric plasma spraying and their subsequent in vitro performance. Biomaterials 27 (2006) 823-831.
  • 26. Choi J.-M., Kim H.-E., Lee I.-S.: Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-base metal substrate. Biomaterials 21 (2000) 469-473.
  • 27. Thian E.S., Khor K.A., Loh N.H., Tor S.B.: Processing of HA-coated Ti-6Al-4V by a ceramic slurry approach: an in vitro study. Biomaterials 22 (2001) 1225-1232.
  • 28. Koshino T., Murase T., Takagi T., Saito T.: New bone formation around porous hydroxyapatite wedge implanted in opening wedge high tibial osteotomy in patients with osteoarthritis. Biomaterials 22 (2001) 1579-1582.
  • 29. Breme J., Zhou Y., Groh L.: Development of a titanium alloy suitable for an optimized coating with hydroxyapatite. Biomaterials 16 (1995) 239-244.
  • 30. Wang X.-X., Hayakawa S., Tsuru K., Osaka A.: Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 23 (2002) 1353-1357.
  • 31. Gan L., Wang J., Pilliar R.M.: Evaluating interface strength of calcium phosphate sol-gel-derived thin films to Ti6Al4V substrate. Biomaterials 26 (2005) 189-196.
  • 32. Kim H.-W., Koh Y.-H., Lo L.-H., Lee S., Kim H.-E.: Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials 25 (2004) 2533-2538.
  • 33. Kim H.-W., Kong Y.-M., Bae C.-J., Noh Y.-J., Kim H.-E.: Sol-gel derived fluorhydroxyapatite biocoatings on zirconia substrate. Biomaterials 25 (2004) 2919-2926.
  • 34. Liang B., Fujibayashi S., Neo M., Tamura J., Kim H.-M., Uchida M., Kokubo T., Nakamura T.: Histological and mechanical investigation of the bone-bonding ability of anodically oxidized titanium in rabbits. Biomaterials 24 (2003) 4959-4966.
  • 35. Yang B., Uchida M., Kim H.-M., Zhang X., Kokubo T.: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25 (2004) 1003-1010.
  • 36. Frauchiger V.M., Schlottig F., Gasser B., Textor M.: Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials 25 (2004) 593-606.
  • 37. Li L.-H., Kong Y.-M., Kim H.-W., Kim Y.-W., Kim H.-E., Heo S.-J., Koak J.-Y. (2004): Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials, 25 (2004) 2867-2875.
  • 38. Giavaresi G., Ambrosio L., Battistion G.A., Casellato U., Gerbasi R., Finia M., Aldini N.N., Martini L., Rimondini L., Giardino R.: Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour deposition: an in vivo study. Biomaterials 25 (2004) 5583-5591.
  • 39. Song W.-H., Jun Y.-K., Han Y., Hong S.-H.: Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials 25 (2004) 3341-3349.
  • 40. Wang X.-X., Yan W., Hayakawa S., Tsuru K., Osaka A.: Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials 24 (2003) 4631-4637.
  • 41. Feng B., Chen J.Y., Qi S.K., He L., Zhao J.Z., Zhang X.D.: Carbonate apatite coating on titanium induced rapidly by precalcification. Biomaterials 23 (2002) 173-179.
  • 42. Jonášova L., Müller F.A., Helebrant A., Strnad J., Greil P.: Biomimetic apatite formation on chemically treated titanium. Biomaterials 25 (2004) 1187-1194.
  • 43. Liu Q., Ding J., Mante F.K., Wunder S.L., Baran G.R.: The role of functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials 23 (2002) 3103-3111.
  • 44. Barrere F., van Blitterswijk C.A., de Groot K., Layrolle P.: Nucleation of biomimetic Ca-P coatings on Ti6Al4V from a SBF x 5 solution: influence of magnesium. Biomaterials, 23 (2002) 2211-2220.
  • 45. Barrere F., Snel M.M.E., van Blitterswijk C.A., de Groot K., Layrolle P.: Nanoscale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials, 25 (2004) 2901-2910.
  • 46. Yan W.-Q., Nakamura T., Kawanabe K., Nishigochi S., Oka M., Koubo T.: Apatite layer-coated titanium for use as bone bonding implants. Biomaterials 18 (1997) 1185-1190.
  • 47. Wen H.B., de Wijn J.R., Cui F.Z., de Groot K.: Preparation of bioactive Ti6Al4V surfaces by a simple method. Biomaterials 19 (1998) 215-221.
  • 48. Wang J., Laurolle P., Stigter M., de Groot K.: Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials 25 (2004) 583-592.
  • 49. Li S.J., Yang R., Niinomi M., Hao Y.L., Cui Y.Y.: Formation and growth of calcium phosphate on the surface of oxidized Ti-29Nb-13Ta-4.6Zr alloy. Biomaterials 25 (2004) 2525-2532.
  • 50. Ball M.D., Downes S., Scotchford C.A., Antonov E.N., Bagratashvilli V.N., Popov V.K., Lo W.-J., Grant D.M., Howdle S.M.: Osteoblast growth on titanium foils coated with hydroxyapatite by pulsed laser ablation. Biomaterials, 22 (2001) 337-347.
  • 51. Cléries L., Fernández-Pradas J.M., Morenza J.L.: Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation. Biomaterials 21 (2000) 1861-1865.
  • 52. Giavaresi G., Fini M., Cigada A., Cheisa R., Rondelli G., Rimondini L., Torricelli P., Aldini N.N., Giardino R.: Mechanical and histomorphometric evaluations of titanium implants with different surface treatments inserted in sheep cortical bone. Biomaterials 24 (2003) 1583-1594.
  • 53. Cheng X., Filliaggi M., Roscoe S.G.: Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy. Biomaterials 25 (2004) 5395-5403.
  • 54. Serro A.P., Fernandes A.C., Saramago B., Lima J., Barbosa M.A.: Apatite deposition on titanium surfaces – the role of albumin adsorption. Biomaterials 18 (1997) 963-968.
  • 55. Feng B., Chen J., Zhang X.: Interaction of calcium and phosphate in apatite coating on titanium with serum albumin. Biomaterials 23 (2992) 2499-2507.
  • 56. Milella E., Cosentino F., Licciulli A., Massaro C.: Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process. Biomaterials 22 (2001) 1425-1431.
  • 57. Zheng X., Huang M., Ding C.: Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 21 (2000) 841-849.
  • 58. Ding S.-J.: Properties and immersion behavior of magnetron-sputtered multilayered hydroxyapatite/titanium composite coatings. Biomaterials 24 (2003) 4233-4238.
  • 59. Ramires P.A., Romito A., Cosentino F., Milella E.: The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials 22 (2001) 1467-1474.
  • 60. Ning C.Q., Zhou Y.: In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. Biomaterials 23 (2002) 2909-2915.
  • 61. Piveteau L.-D., Gasser B., Schlapbach L.: Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application. Biomaterials 21 (2000) 2193-2201.
  • 62. Wen H.B., Wolke J.G.C., de Wijn J.R., Liu Q., Cui F.Z., de Groot K.: Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatment. Biomaterials 18 (1997) 1471-1478.
  • 63. Liu Y.-P., Li M.-S., Wang Z.-G., Zhu R.-F.: Plasma-sprayed hydroxyapatite + titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 25 (2004) 4393-4403.
  • 64. Li H., Khor K.A., Cheng P. (2003): Impact formation and microstructure characterization of thermal sprayed hydroxyapatite/titania composite coatings. Biomaterials 24 (2003) 949-957.
  • 65. Yamada K., Imamura K., Itoh H., Iwata H., Maruno S.: Bone bonding behavior of the hydroxyapatite containing glass-titanium composite prepared by the Cullet method. Biomaterials 22 (2001) 2207-2214.
  • 66. So K., Fujibayashi S., Neo M., Anan Y., Ogawa T., Kokubo T., Nakamura T.: Accelerated degradation and improved bone-bonding ability of hydroxyapatite ceramics by addition of glass. Biomaterials 27 (2006) 4738-4744.
  • 67. Chou B.-Y., Chang E.: Microstructural characterization of plasma-sprayed hydroxyapatite-10 wt.% ZrO2 composite coating on titanium. Biomaterials 20 (1999) 1823-1832.
  • 68. Gu Y.W., Khor K.A., Pan D., Cheang P.: Activity of plasma yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid. Biomaterials 25 (2004) 317703185.
  • 69. Khor K.A., Gu Y.W., Pan D., Cheang P.: Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings. Biomaterials 25 (2004) 4009-4017.
  • 70. Dong Z.L., Khor K.A., Quek C.H., White T.J., Cheang P.: TEM and SEM analysis on heat-treated and in vitro plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings. Biomaterials 24 (2003) 97-105.
  • 71. Thian E.S., Loh N.H., Khor K.A., Tor S.B.: Microstructures and mechanical properties of powder injection molded Ti-6Al-4V/HA powder. Biomaterials 23 (2002) 2927-2938.
  • 72. Gu Y.W., Khor K.A., Cheang P.: In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF). Biomaterials 24 (2003) 1603-1611.
  • 73. Grandjean- Laquerriere A., Laquerriere P., Jallot E., Nedelec J.-M., Guenounou M., Laurent-Maquin D., Phillips T.M.: Influence of the zinc concentration of sol-gel derived zone substituted hydroxyapatite on cytokine production by human monocytes in vitro. Biomaterials 27 (2006) 3195-3200.
  • 74. Kim H.-W., Knowles J.C., Kim H.-E.: Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 25 (2004) 1279-1287.
  • 75. Liu X., Dong C.: Plasma sprayed wollastonite/TiO2 composite coatings on titanium alloys. Biomaterials 23 (2002) 4065-4077.
  • 76. Di Palma F., Chamson A., Lafage-Prouts M.-H., Jouffray P., Sabido O., Peyroche S., Vico L., Rattner A.: Physiological strains remodel extracellular matrix and cell-cell adhesion in osteoblastic cells cultured on alumina-coated titanium alloy. Biomaterials 25 (2004) 2565-2575.
  • 77. Saiz E., Goldman M., Gomez-Vega J.M., Tomsia A.P., Marshall G.W., Marshall S.J.: In vitro behavior of silicate glass coatings on Ti6Al4V. Biomaterials 23 (2002) 3749-3756.
  • 78. Li S.J., Niinomi M., Akahori T., Kasuga T., Yang R., Gao Y.L.: Fatigue characteristics of bioactive glass-ceramic coated Ti-29Nb-13Ta-4.6Zr for biomedical application. Biomaterials 25 (2004) 3369-3378.
  • 79. Bosetti M., Vernè E., Ferraris M., Ravaglioli A., Cannas M.: In vitro characterisation of zirconia coated by bioactive glass. Biomaterials 22 (2001) 987-994.
  • 80. Schroeder A., Francz G., Bruinink A., Hauert R., Mayer J., Wintermantel E.: Titanium containing amorphous hydrogenated carbon films (a-C:H/Ti): surface analysis and evaluation of cellular reactions using bone marrow cell cultures in vitro. Biomaterials 21 (2000) 449-456.
  • 81. Porté-Durreiu M.C., Guillemot F., Pallu S., Labrugére C., Brouillaud B., Bareille R., Amédée J., Barthe N., Dard M., Baquey Ch.: Cyclo-(DfKRG) peptide grafting onto Ti-6Al-4V: physical characterization and interest towards human osteoprogenitor cells adhesion. Biomaterials 25 (2004) 4837-4846.
  • 82. Morra M., Cassinelli C., Casrado G., Cahalan P., Cahalan L., Fini M., Giardino R.: Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies. Biomaterials 24 (2003) 4639-4654.
  • 83. De Giglio E., Guascito M.R., Sabbatini L., Zambonin G.: Electropolymerizarion of pyrrole on titanium substrates for the future development of new biocompatible surfaces. Biomaterials 22 (2001) 2609-2616.
  • 84. Haddow D.B., Kothari S., James P.F., Short R.D., Hatton P.V., van Noort R.: Synthetic implant surfaces. 1. The formation and characterization of sol-gel titania films. Biomaterials 17 (1996) 501-507.
  • 85. Manso M., Ogueta S., Garcia P., Pérez-Rigueiro J., Jiménez C., Martinez-Duart J.M., Langlet M.: Mechanical and in vitro testing of aerosol-gel deposited titania coatings for biocompatible applications. Biomaterials 23 (2002) 349-356.
  • 86. Yang Y., Tian J., Deng L., Ong J.L.: Morphological behavior of osteoblast-like cells on surface-modified titanium in vitro. Biomaterials 23 (2002) 1383-1389.
  • 87. Yang Y., Ong J.L., Tian J.: Depostion of highly adhesive ZrO2 coating on Ti and CoCrMo implant materials using plasma spraying. Biomaterials 24 (2003) 619-627.
  • 88. Chevalier J.: What future for zirconia as a biomaterial? Biomaterials 27 (2006) 535-543.
  • 89. Wierzchoń T., Czarnowska E., Krupa D.: Inżynieria powierzchni w wytwarzaniu biomateriałów tytanowych. Ofic. Wyd. Politechniki Warszawskiej, Warszawa 2004.
  • 90. Marciniak J.: Biomateriały. Wyd. Politechniki Śląskiej, Gliwice 2002.
  • 91. Zieliński A., Świeczko-Żurek B., Sobieszczyk S.: Estimation of the expected effects of different surface modifications on mechanical, chemical and biological behaviour of endoprostheses. Inżynieria Biomateriałów 9 (2006) 217-219.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0018-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.