Czasopismo
2009
|
Vol. 57, nr 3
|
249-256
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper deals with the modeling of a preventive maintenance strategy applied to a single-unit system subject to random failures. According to this policy, the system is subjected to imperfect periodic preventive maintenance restoring it to 'as good as new1 with probability p and leaving it at state 'as bad as old' with probability q. Imperfect repairs are performed following failures occurring between consecutive preventive maintenance actions, i.e the times between failures follow a decreasing quasi-renewal process with parameter a. Considering the average durations of the preventive and corrective maintenance actions as well as their respective efficiency extents, a mathematical model is developed in order to study the evolution of the system stationary availability and determine the optimal PM period which maximizes it. The modeling of the imperfection of the corrective maintenance actions requires the knowledge of the quasi-renewal function. A new expression approximating this function is proposed for systems whose times to first failure follow a Gamma distribution. Numerical results arc obtained and discussed.
Rocznik
Tom
Strony
249-256
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
autor
autor
- Centre de Recherche en Productique, École Supéricure des Sciences et Techniques de Tunis, Tunisie, 5 Avenue Taha Hussein, BP, 56, Bâb Manara, Tunis, slah@gmx.fr
Bibliografia
- [1] R. Barlow and F. Proschan, Mathematical Theory of Reliability, John Wiley & Sons, New York, 1965.
- [2] C. Valdez-Flores and R.M. Feldman, "A survey of preventive maintenance models for stochastically deteriorating single-unit systems", Naval Research Logistics 36, 419-446 (1989).
- [3] W. Hongzhou, "A survey of maintenance policies of deteriorating systems", Eur. J. Operational Research 139, 469-489 (2002).
- [4] M.A.K. Malik, "Reliable preventive maintenance policies", AIIE Transactions 11 (3), 221-228 (1979).
- [5] M. Kijima, "Some results for repairable systems with general repair", J. Appl. Prob. 26, 89-102 (1989).
- [6] J.K Chan and L. Shaw, "Modeling repairable systems with failure rates that depend on age and maintenance", IEEE Transactions on Reliability 42 (4), 566-571 (1993).
- [7] I. Shin, T.J. Lim, and C.H. Lie, "Estimating parameters of intensity function and maintenance effect for repairable unit", Reliability Engineering and System Safety 54, 1-10 (1996).
- [8] H. Wang and H. Pham, "A quasi renewal process and its applications in imperfect maintenance", Int. .J. Systems Science 27 (10), 1055-1062 (1996).
- [9] H. Wang and H. Pham, Reliability and Optimal Maintenance, Springer, New York, 2006.
- [10] H. Wang and H. Pham, "A quasi renewal process and its applications in imperfect maintenance", Int. J. Systems Science 28 (12), 13-29 (1997).
- [11] P.G. Moschopoulos, "The distribution of the sum of independent Gamma random variables", Ann, Inst. Statist. Math A 37, 541-544 (1985).
- [12] L. Pierrat and G. Aubigny, "Somme delois Gamma de paramètres d'échelle distincts et détermination des parametrès d'une distribution Gamma approchée", 38eme Journées de Statistique, CD ROM (2006), (in French).
- [13] I.-J. Rehmert, "Availability analysis for the quasi-renewal process", Ph.D. Thesis in Industrial and Systems Engineering, Virginia Polytechnic Institute and Stale University, Virginia, 2000.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0040-0025