Czasopismo
2008
|
Vol. 56, nr 2
|
87-102
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a modification of capillary optical fibers fabrication method from an assembled glass preform. A change of dimensional proportions in the capillary optical fiber drawn from a single preform is allowed on-line via the control of overpressure and thermal conditions in the outflow meniscus which essentially lowers the manufacturing costs. These conditions are among the solutions (velocity fields) of the Navier-Stokes equations adapted to the capillary optical fiber pulling geometry and temperature distribution in the oven. The velocity fields give solutions to other quantities of interest such as flow rate, pulling force and fiber geometry. The calculation and experimental results for capillary optical fibers were shown in the following dimensional range: internal diameters 2-200 [mi]m, external diameters 30-350 [mi]m, within the assumed dimensional stability (including ellipticity) better than 1 %. The parameters of fabricated capillary optical fibers of high-quality low-loss optical multicomponent glasses were: losses 100 dB/km, mechanical strength above 1GPa with Weibull coefficient in the range 3-7, internal numerical aperture 0.1-0.3, external numerical aperture 0.1-0.3, core index 1.5-1.8, transparency 0.4-2 [mi]m, thermally and/or chemically conditioned internal surface, double polyimide protection layer, soft or hard jacketed, connectorized. The capillary optical fibers were applied in our own and several external laboratories in spectroscopy, refractometry, microfluidics and functional microoptic components. The paper summarizes a design, technological and application work on capillary optical fibers performed during a recent national research program devoted to optoelectronic components and modules.
Rocznik
Tom
Strony
87-102
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Institute of Electronic Systems, Warsaw University of Technology, 15/19 Nowowiejska St., 00-665 Warsaw, Poland, elka.pw.edu.pl
Bibliografia
- [1] R. Romaniuk and J. Dorosz, Design and Fabrication of Capillary Optical Fibers, Technical Report, Grant PBZ-MIN-009/T11/2003 (2003–2007), Warsaw University of Technology, 2007, (in Polish).
- [2] A.B. Sotsky and L.I. Sotskaya, “Modes of capillary optical fibers”, Optics Communications 230 (1–3), 67–79 (2003).
- [3] M.A. Olshanii, Yu.B. Ovchinnikov, and V.S. Letokhov, “Laser guiding of atoms in a hollow optical fiber”, Opt. Commun 98, 77–80 (1993).
- [4] J.F. Giuliani, Optical Fiber Sensor for Methane Gas, US Patent 4708941, 1987.
- [5] R. Altcorn, I. Koev, R.P. VanDuyne, and M. Litorja, “Lowloss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy”, Applied Optics 36 (34), 8992–8998 (1997).
- [6] J. Bravo, I.R. Matias, I.D. Villar, J.M. Corres, and F.J. Arregui, “Nanofilms on hollow core fiber-based structures: an optical study”, J. Lightwave Technol. 24 (5), 2100–2105 (2006).
- [7] K. Matsumura, Y. Matsumura, and J.A. Harrington, “Evaluation of gold, silver and dielectric coated hollow glass waveguides”, Opt. Eng. 35, 3418–3421 (1996).
- [8] V. Neves and A.S.C. Fernandes, “Modal characteristics of Atype and V-type dielectric profile fibres”, Microwave and Optics Technology Letters 16(3), 164–169 (1998).
- [9] R. Romaniuk and J. Dorosz, “Technology of soft-glass optical fiber capillaries”, Proc. SPIE 6347, 634711-634718 (2006).
- [10] E.A.J. Marcatili and R.A. Schmetzer, “Hollow metallic and dielectric waveguides for long distance optical transmission”, Bell Syst. Tech. J. 43, 1783 (1964).
- [11] D.H. Bilderback, “Review of capillary x-ray optics from the 2nd International Capillary Optics Meeting”, X-Ray Spectrom-etry 32, 195–207 (2003).
- [12] P. Glas, M. Nauman, A. Schirrmacher, and T. Pertsch, “Neodymium-doped hollow optical fiber laser for applications in laser-guided atoms”, Proc. CLEO 60, 428–429 (1998).
- [13] P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels”, Opt. Lett. 30, 1273–1275 (2005).
- [14] P.J.A. Sazio, A. Amezcua-Correa, C.E. Finlayson, J.R. Hayes, T.J. Scheidemantel, N.F. Baril, B.R. Jackson, D.J. Won, F. Zhang, E.R. Margine, V. Gopalan, V.H. Crespi, and J.V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors”, Science 311, 1583–1586 (2006).
- [15] J. Mrazek, V. Matejec, M. Hayer, J. Skokankova, I. Kasik, D. Berkova, and F. Kostka, “Capillary optical fibers modified by xerogel layers for chemical detection“, Proc. SPIE 6180, 618013.1–6 (2006).
- [16] Department of Optical Fiber Technology, Maria Curie-Skłodowska University, http://www.umcs.lublin.pl/jednostki.php?id=323.
- [17] Department of Optical Radiation, Białystok University of Technology, http://vela.pb.bialystok.pl/kpo/.
- [18] PBZ-MIN-009/T11/2003, “Optoelectronic components and modules for applications in medicine, industry, environment protection and military technology”, Ministry of Science and Informatization, http://kbn.icm.edu.pl/finauki98/PBZ/lista projektow 20031020.html, 2003.
- [19] M. Borecki, M.J. Korwin-Pawłowski, M. Bebłowska, “Light transmission characteristics of silica capillaries”, Proc. SPIE 6347, 634741–634747 (2006).
- [20] P. Miluski and D. Dorosz, “Measurement of refractive index using capillary waveguide”, Proc. SPIE 6347, 634742–634746 (2006).
- [21] P. Miluski, “The temperature sensor based on capillary waveguide”, Proc. SPIE 6937, 693755–683759 (2007).
- [22] M. Gregory Forest and Hong Zhou, “Unsteady analyses of thermal glass fibre drawing process”, Europ. J. Applie Mathematics 12, 479–496 (2001).
- [23] A. Dybko, Warsaw Univ. Technology, Faculty of Chemistry, Department of Chemical Sensors, private communications.
- [24] M. Borecki, Warsaw Univ. Technology, Institute of Micro and Optoelectronics, Department of Microsystems Technology, private communications.
- [25] S.A. Khodier, “Refractive index of standard oils as a function of wavelength and temperature”, Optics and Laser Technology 34, 125–128 (2002).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0031-0012