Czasopismo
2007
|
Vol. 7, nr 2(12)
|
189-201
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The possible causes and mechanisms of degradation of titanium biomaterials used as long term implants for some joints are discussed. The effects of presence of metallic implant in human body are reviewed. The current testing procedures and their imperfections are shown. The evaluation procedure of biomaterials is proposed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
189-201
Opis fizyczny
Bibliogr. 54 poz., tab.
Twórcy
autor
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Engineering
Bibliografia
- [1] Windler M., Klabunde R.: Titanium for hip and knee prostheses. [In] Titanium in Medicine, D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen [eds.], Springer-Verlag, Berlin Heildelberg, 2001, pp. 703-746.
- [2] Okazaki Y., Gotoh E, Manabe T., Kobayashi K.: Comparison of metal concentrations in rat tibia tissues with various metallic implants. Biomaterials 28 (2004), pp. 5913-6025.
- [3] Ramakrishna S., Mayer J., Wintermantel E., Leong KW.: Biomedical applications of polymer-composite: a review. Composite Science and Technology 61 (2001), pp. 1189-1224.
- [4] Milošev I., Metikos-Huković M., Strehblow H.-H.: Passive film on orthopaedic TiA1V alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials 21 (2000), pp. 2103-2113
- [5] Świeczko-Żurek S., Jażdżewska M., Zieliński A.: The phase composition of the surface layer of laser melted Ti-6Al-4V bioalloy. Engineering of Biomaterials 9 (2006), pp. 58-60.
- [6] Khan M.A., Williams R.L., Williams D.F.: Conjoint corrosion and wear in titanium alloys. Biomaterials 20 (1999), pp. 765-772.
- [7] Khan M.A., Williams RL., Williams D.F.: In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials 17 (1996), pp. 2117-2126.
- [8] Okazaki Y.: Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials 23 (2002), pp. 2071-2077.
- [9] Koike M., Fuji H.: The corrosion resistance of pure titanium in organic acids. Biomaterials 22 (2001), pp. 2931-2936.
- [10] Okazaki Y., Gotoh E.: Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26 (2005), pp. 11-21.
- [11] Burstein G.T., Liu C., Souto RM.: The effect of temperature on the nucleation of corrosion pits on titanium in Ringer's physiological solution. Biomaterials 26 (2005), pp. 245-256.
- [12] Browne M., Gregson P.J.: Effeet of meehanieal surfaee pretreatment on metal ion release. Biomaterials 21 (2000), pp. 385-392.
- [13] Cabrini M., Cigada A., Rondelli G., Vieentini B.: Effect of different surface finishing and of hydroxyapatitc coatings on passive and corrosion current of Ti6Al4V alloy in simulated physiological solution. Biomaterials 18 (1997), pp. 783-787.
- [14] Krupa D., Baszkiewicz J., Kozubowski J.A., Barcz A., Sobczak J.W, Biliński A., Lewandowska-Szurnieł M., Rajchel R: Effect of phosphorus-ion implantation on the corrosion resistance and biocompatibility of titanium. Biomaterials 23 (2002), pp. 33293340.
- [15] Krupa D., Baszkiewicz J., Kozubowski J.A., Barcz A., Sobczak J.W, Biliński A., Lewandowska-Szumieł M., Rajchel R: Effect of calcium-ion implantation on the corrosion resistance and biocompatibility of titanium. Biomaterials 2s (2001), pp. 2139-2151.
- [16] Aziz-Kerrzo M., Conroy KG., Fenelon A.M., Farrell S.T., Breslin C.R (2001): Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials 22 (2002), pp. 1357-1363.
- [17] Reclaru L., Lerf R., Eschler P.-Y., Blatter A., Meyer J.-M.: Evaluation of corrosion on plasma sprayed and anodized titanium implants, both with and without bane cement. Biomaterials 24 (2003), pp. 3027-3038.
- [18] Ogawa T., Yokoyama K., Asaoka K, Sakai J.: Hydrogen absorption behavior of beta titanium alloy in acid fluoride solutions. Biomaterials 25 (2004), pp. 2419-2425.
- [19] Kaneko K., Yokoyama K., Moriyama K, Asaoka K, Sakai J., Nagumo M.: Delayed fracture of beta titanium orthodontic wire in fluoride aqueaous solutions. Biomaterials 24 (2003), pp. 2113-2120.
- [20] Long M., Rack H.J.: Titanium alloys in total joint replacement - a materials science perspective. Biomaterials 19 (1998), pp. 1621-1639.
- [21] Hart AJ., Hester T., Sinclair K, Powell U., Goodship A.E., Pele L., Fersht N.L., Skinner J.: The association between metal ions from hip resurfacing and reduced T -cell counts. Journal of Bone Joint Surgery Br. 88 (2006), pp. 449-454.
- [22] Turkan U., Ozturk O., Eroglu A.E.:Metal ion release from TiN coated CoCrMo orthopedic implant material. Surface and Coatings Technology 200 (2006)pp. 5020-5027.
- [23] Hensten-Pettersen A.: Allergy and hypersensitivity. [In] Biological, material, and mechanical considerations of joint replacements. RF. Morrey (ed.), New York, Raven Press, 1993, pp. 353-60.
- [24] Wang J.Y., Wicklund RH., Gustilo RB., Tsukayama D.T.: Prosthetic metals impair immune response and cytokine release in vivo and in vitro. Journal of Orthopaedic Research 15 (1997), pp. 688-699.
- [25] Hallab N., Jacobs J.J., Black J.: Hypersensitivity to metallic biomaterials: a review of leukocyte migration inhibition assays. Biomaterials 21 (2000), pp. 1301-1314.
- [26] Malluche H.H.: Aluminium and bane disease in chronic renal failure. Nephrology Dialysis Transplantation 17 (2002), pp. 21-24.
- [27] Domingo J.L.: Vanadium and diabetes. What about vanadium toxicity? Molecural and Cellular Biochemistry 203 (2000), pp. 185-187.
- [28] Hallab N.J., Mikecz K., Vermes C., Skipor A, Jacobs J.J.: Orthopaedic implant related metal toxicity in terms of human lymphocyte reactivity to metal-protein complexes produced from cobalt-base and titanium-base implant alloy degradation. Molecular and Cellular Biochemistry 222 (2001), pp. 122-136.
- [29] Heisel C., Silva M., Skipor AK., Jacobs J.J., Schmalzried T.P.: The relationship between activity and ions in patients with metal-on-metal bearing hip prostheses. Journal of Bane Joint Surgery Am. 87 (2005), pp. 781-787.
- [30] Marciniak J.: Biomateriały (Biomaterials). Silesian Univ. Techn. Press, Gliwice, Poland 2002 (in Polish).
- [31] Magnin Th.: Advances in corrosion-deformation interactions. Trans Tech Publ., Switzerland, 1996.
- [32] Głuszek J., Masalski J., Furman P., Nitsch K.: Structural and electrochemical examinations of PACVD TiO2 films in Ringer solution. Biomaterials 18 (1997), 789-794.
- [33] MacDonald D.E., Rapuano B.E., Deo N., Strancik M., Somasundaran P., Boskey AL.: Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials 25 (2004),3135-314
- [34] Nishiguchi S., Kato H., Fujita H., Oka M., Kim H.-M., Kokubo T., Nakamura T.: Titanium metals form direct bonding to bane after alkali and heat treatments. Biomaterials 22 (2001), 2525-2533.
- [35] Yang B., Uchida M., Kim H.-M., Zhang X., Kokubo T.: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25 (2004), pp. 1003-1010.
- [36] Wang X.-X., Yan W., Hayakawa S., Tsuru K., Osaka A.: Apatite depossition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials 24 (2003), pp. 4631-4637.
- [37] Wang C.X., Wang M., Zhou X.: Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study. Biomaterials 24 (2003), pp. 3069-3077.
- [38] Wang X.-X., Hayakawa S., Tsuru K., Osaka A: Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 23 (2002), pp. 1353-1357.
- [39] Takeuchi M., Abe Y, Yoshida Y., Nakayama Y, Okazaki M., Akagawa Y: Acid pretreatment of titanium implants. Biomaterials 24 (2003), pp. 1821-2827.
- [40] Sul Y.-T., Johansson C.B., Petronis S., Krozer A., Jeong Y, Wennerberg A, Albrektssan T.: Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configuration, surface roughness, crystal structure and chemical composition. Biomaterials 23 (2002), pp. 491-501.
- [41] Song W.-H., Jun Y-K., Han Y., Hong S.-H.: Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials 25 (2004), pp. 3341-3349.
- [42] Frauchiger Y.M., Schlottig F., Gasser B., Textor M.: Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials 25 (2004), pp. 593-606.
- [43] Wierzchoń T., Czarnowska E., Krupa D.: Inżynieria powierzchni w wytwarzaniu biomateriałów tytanowych (Surface engineering in production of titanium biomaterials). Ofic. Wyd. PW, Warszawa, 2004.
- [44] Garcia L, De Damborena J.J.: Corrosion properties of TiN prepared by laser gas alloying of Ti and Ti6Al4V alloy. Corrosion Science 40 (1998), pp. 1411-1498.
- [45] Venugopalan R, George M.A., Weimer J.J., Lucas LC.: Surface topography, corrosion and microhardness of nitrogen-diffusion-hardened titanium alloy. Biomaterials 20 (1999), pp. 1709-1716.
- [46] Venugopalan R, Weimer U., George M.A., Lucas LC.: The effect of nitrogen diffusion hardening on the surface chemistry and scratch resistance. Biomaterials 21 (2000), pp. 1669-1677.
- [47] Zieliński A. Jażdżewska, Narożniak-Łuksza A.: Surface structure and properties of Ti6Al4V alloy laser melted at cryogenic conditions. J. Achievements in Materials and Manufacturing Engineering 18 (2006), pp. 423-426.
- [48] Malinov S., Sha W.: Application of artificial neural networks for modeling correlations in titanium alloys. Materials Science and Engineering A365 (2004), pp. 202-211.
- [49] Gundersen O., Kluken A.O., Myhr O.R, Jones J.E., Rhoades V., Day J., Jones J.C., Krygowski B. et al.: Mathematical Modeling of Weld Phenomena 5. H. Cerjak (ed.), Institute of Materials, London, UK, 2001, p. 671.
- [50] Malinov S., Sha W.: Software products for modening and simlation in materials science. Computational Materials Science 28 (2003), pp. 179-198.
- [51] Fujii H., MacKay D.J.C., Bhadeshia H.K.D.H., Harada H., Nogi K.: Prediction of creep rupture life in nickel-based superalloys using Bayesian neural networks. Journal of the Japan Institute of Metals 63 (1999), pp. 905-911.
- [52] Bhadeshia H.K.D.H.: Neural networks in materiais Science. ISU Int. 39 (1999), pp. 966-979.
- [53] Cottis R.A., Qing L, Owen G., Gartland S.J., Helliwen LA., Turega M.: Nerual network methods for corrosion data reduction. Materials and Design 20 (1999), pp. 169-178.
- [54] Malinov S., Sha W., McKeown J.J.: Modening the correlation between processing parameters and properties in titanium alloys using artificial neural network. Computational Materials Science 21 (2001), pp. 375-394.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0027-0023