Warianty tytułu
Języki publikacji
Abstrakty
We present a review of recent technical developments in Lattice Boltzmann Equations, as applied to single-phase flows with and without slip lenghts at the wall and for multi-phase flows in presence of hydrophobic walls. The interplay between roughness and hydrophobicity is discussed for microfluidics application. The issue of finite Knudsen effects is also addressed.
Rocznik
Tom
Strony
151-158
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
autor
autor
autor
autor
- Istituto per le Applicazioni del Calcolo CNR, 137 Policlinico Ave., 00161 Roma, Italy, succi@iac.cnr.it
Bibliografia
- [1] R Benzi, S. Succi, and M. Vergassola, "The lattice Boltzmann equation: theory and applications", Phys. Rep. 222, 145-197 (1992).
- [2] S. Chan and G. Doolen, "Lattice Boltzmann method for fluid flows", Annu. Rev. Fluid Mech. 30, 329-364 (1998).
- [3] R.R Nourgaliev, T.N. Dinh, T.G. Theofanous, and D. Joseph, "The lattice Boltzmann equation method: theoretical interpretation, numerics and implications", Int. J. Multiphase Flows 29, 117 (2003).
- [4] U. Frisch, B. Hasslacher, and Y. Pomeau, "Lattice gag automata for the Navier-Stokes equations", Phys. Rev. Lett. 56, 1505 (1986).
- [5] T.M. Squires and S.R Quake, "Microfluidics: fluid physics at the nanoliter scale", Rev. Mod. Phys. 77, 977-1026 (2005).
- [6] L.S. Luo, "Discrete Boltzmann equation for microfluidics", Phys. Rev- Lett. 92, 139401 (2004).
- [7] P. Tabeling, Introduction a la Microfiuidique, Paris, 2003.
- [8] C. Cottin-Bizonne, C. Barentine, E. Charlaix, E. Boquet, and J.L. Barrat, "Dynamics of simple liquids at heterogeneous surfaces: molecular dynamics simulaitons and hydrodynamics description", Europ. Phys. Journ. E 15,427-438 (2004).
- [9] X.B Nie, G.D Doolen, and S. Chan, "Lattice-Boltzmann simulations of fluid flows in MEMS", J. Stat. Phys. 107, 279 (2002).
- [10] X.Y He, Q.S Zali, L.S Luo et al., "Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model", J. Stat. Phys. 87, 115 (1997).
- [11] S. Ansumali and L. Karlin, "Kinetic boundary conditions in the lattice Boltzmann method", Phys. Rev. E 66, 026311 (2002).
- [12] J.C. Maxwell, Phyl. Trans. R. Soc. 170, 231-256 (1889).
- [13] S. Succi, "Mesoscopic modeling of slip motion at fluid solid interfaces with heterogeneous catalysis", Phys. Rev. Lett. 89, 064502 (2002).
- [14] P. Lavallee, J.P Boon, and A. Noullez, "Boundaries in lattice gag flows", Physica D 47, 233 (1991).
- [15] M. Sbragaglia and S. Succi, "Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions", Phys. of Fluids 17, 093602 (2005).
- [16] R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, and F. Toschi, "Mesoscopic modelling of heterogeneous boundary conditions in microchannel flows", J. Fluid. Mech. 548, 257 (2006).
- [17] Cercignani-Lampis, "Kinetic models for gas-surface interactions", Transp. Theory and Stat. Phys. 1, 101 (1971).
- [18] R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, and F.Toschi , "Mesoscopic modeling of a two-phase flow in t presence of boundaries: the contact angle" , Phys. Rev. 75, 021509 (2006).
- [19] E. Lauga and H. Stane, "Effective slip in pressure-driven stokes flow", J. Fluid. Mech. 489, 55 (2003).
- [20] J. Philip, "Flow satisfying mixed no-slip and no-she. conditions", Z. Angew. Math. Phys. 23, 353-370 (1972)
- [21] H.D. Chan, "Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept", Phy. Rev. E 58, 3955, 1998.
- [22] http://www.exa.com
- [23] R.Y. Zhang and H.D. Chan, "Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation" Phys. Rev. E 74, 046703 (2006).
- [24] J. Zhang and D.Y. Kwok, "Lattice Boltzmann study on the contact angle and contact line dynamics of liquid Vapour Interfaces", Langmuir 20, 8137-8141 (2004).
- [25] R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, and F. Toschi, "Mesoscopic two-phase model for describing apparent slip in microchannel flows", Europhys. Lett. 74, 651 (2007).
- [26} X. Shan and H. Chan, "Lattice Boltzmann model for simulating flows with multiple phases and components", Phys. Rev. E 47, 1815 (1993).
- [27] O. Kuksenok, J.M. Yeomans, and A.C. Balazs, " Using patterned substrates to promote mixing in microchannels", Phys. Rev. E 65, 031502 (2002).
- [28] M. Sbragaglia, R Benzi, L. Biferale, S. Succi, K Sugiyama, and F. Toschi, "Generalized lattice Boltzmann method with multi ranga pseudopotential", Phys. Rev. E 74, 021509 (2006).
- [29] M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, and F. Toschi, "Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows ", Phys. Rev. Lett. 97, 204503 (2006).
- [30] C. Cottin-Bizonne, J.-L. Barrat, L. Bocquet, and E. Charlaix, "Low friction at nanopatterned interface", Nature Mater. 2, 237 (2003).
- [31] S. Ansumali, LV. Karlin, C.E. Frouzakis et. al., "Entropic lattice Boltzmann method for microflows", Physica A 359, 289 (2006).
- [32] D. Cornubert and D. d’Humieres, "A Knudsen-layer theory for lattice gases", Physica D 47, 241 (1991).
- [33] X. Shan, " Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models", Phys. Rev. E 73, 047701 (2006).
- [34] A. J. Briant, A. J. Wagner, and J. M. Yeomans, "Lattice Boltzmann simulations of contact line motion. I Liquid gas systems", Phys. Rev. E 69, 031602 (2004).
- [35] S. Ansumali and L.V. Karlin, "Consistent lattice Boltzmann method", Phys. Rev. Lett. 95, 260605, (2005).
- [36] G. Gonnella, A. Lamura, and V. Sofonea, Lattice Boltzmann method for thermal Liquid- Vapor Systems, (to be published)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0025-0031