Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 55, nr 2 | 141-150
Tytuł artykułu

Bio-inspired mechanics of bottom-up designed hierarchical materials: robust and releasable adhesian systems of gecko

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To explore the basic principles of hierarchical materials designed from nanoscale and up, we have been studying the mechanics of robust and releasable adhesion nanostructures of gecko [1]. On the question of robust adhesion, we have introduced a fractal-like hierarchical hair model to show that structural hierarchy allows the work of adhesion to be exponentially enhanced as the level of structural hierarchy is increased. We show that the nanometer length scale plays an essential role in the bottom-up design and, baring fracture of hairs themselves, a hierarchical hair system can be designed from nanoscale and up to achieve flaw tolerant adhesion at any length scales. For releasable adhesion, we show that elastic anisotropy leads to orientation-dependent adhesion strength. Finite element calculations revealed that a strongly anisotropic attachment pad in contact wit h a rigid substrate exhibits essentially two levels of adhesion strength depending on the direction of pulling.
Wydawca

Rocznik
Strony
141-150
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] H. Yao and H. Gao, "Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko", J. Mech. Phys. Solids 54, 1120-1146 (2006).
  • [2] M. Scherge and S. Gorb, Biological Micro- and Nanotribology, Spinger-Verlag, New York, 2001.
  • [3] K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R Fearing, and RJ. Full, "Adhesive. force of a single gecko foot-hair", Nature 405, 681-685 (2000).
  • [4] K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R Hansen, S. Sponberg, T.W. Kenny, R Fearing, J.N. Israelachvili, and R.J. Full, "Evidence for van der Waals adhesion in gecko setae", Proc. Natl. Acad. Sci. 99, 12252-12256 (2002).
  • [5] K. Autumn and A.M. Peattie, "Mechanisms of adhesion in geckos", Integr. Compar. Biol. 42, 1081-1090 (2002).
  • [6] G. Huber, S. Gorb, R. Spolenak, and E. Arzt, "Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy", Biol. Lett. 1, 2-4 (2005).
  • [7] J.N. Israelachvili, Intermolecular and Surface Forces, 2nd ed., Academic Press, London, 1992.
  • [8] H. Hertz, "Über die Berührung fester elastischer Körper" ("On the contact of elastic solids"), Reine Angew. Math. 92,156-171 (1882).
  • [9] KL. Johnson, K Kendall, and A.D. Roberts, "Surface energy and contact of elastic solids", Proc. R. Soc. Lond. A 324, 301-313 (1971).
  • [10] A.A. Griffith, "The phenomena of rupture and flow in solids", Phil. Trans. Roy. Soc. Lond. A 221, 163-198 (1921).
  • [11] B.V. Derjaguin, V.M. Muller, and Y.P. Toporov, "Effect of contact deformations on the adhesion of particles", J. Colloid Interface Sci. 53, 314-326 (1975).
  • [12] R.S. Bradley, "The cohesive force between solid surfaces and the surface energy of solids", Phil. Mag. 13, 853-862 (1932).
  • [13] D. Maugis, "Adhesion of spheres: the JKR-DMT transition using a Dugdale model", J. Colloid Interface Sci. 150, 243-269 (1992).
  • [14] D.S. Dugdale, "Yielding of steel sheets containing slits", J. Mech. Phys. Solids 8, 100-104 (1960).
  • [15] C.Y. Hui, J.M. Baney, and E.J. Kramer, "Contact mechanics and adhesion of viscoelastic spheres", Langmuir 14, 6570-6578 (1998).
  • [16] G. Haiat, M.C.P Huy, and E. Barthel, "The adhesive contact of viscoelastic spheres", J. Mech. Phys. Solids 51, 69-99 (2003).
  • [17] K.S. Kim, R.M. McMeeking, and K.L. Johnson, "Adhesion, slip, cohesive zones and energy fluxes for elastic spheres in contact", J. Mech. Phys. Solids 46, 243-266 (1998). .
  • [18] E. Arzt, S. Enders, and S. Gorb, "Towards a micromechanical understanding of biological surface devices", Z. Metallk. 93, 345-351 (2002).
  • [19] E. Arzt, S. Gorb, and R. Spolenak, "From micro to nano contacts in biological attachment devices", Proc. Natl. Acad. Sci. 100, 10603-10606 (2003).
  • [20] B.N.J. Persson, "On the mechanism of adhesion in biological systems", J. Chem. Phys. 118, 7614-7621 (2003).
  • [21] R Spolenak, S. Gorb, H. Gao, and E. Arzt, "Effects of contact shape on the scaling of biological attachments", Proc. R. Soc. A 461, 305-319 (2005).
  • [22] B.N.J. Persson, "Nanoadhesion", Wear 254, 832-834 (2003).
  • [23] H. Gao and H. Yao, "Shape insensitive optimal adhesion of nanoscale fibrillar structures", Proc. Natl. Acad. Sci. 101, 7851-7856 (2004).
  • [24] H. Gao, X. Wang, H. Yao, S. Gorb, and E. Arzt, "Mechanics of hierarchical adhesion structures of geckos", Mechanics of Materials 37, 275-285 (2005).
  • [25] N.J. Glassmaker, A. Jagota, and C.Y. Hui, "Adhesion enhancement in a biomimetic fibrillar interface", Acta Biomater. 1, 367-375 (2005).
  • [26] H. Gao, B. Ji, LL. Jager, E. Arzt, and P. Fratzl, "Materials become insensitive to flaws at nanoscale: lessons from nature", Proc. Natl. Acad. Sci. 100, 5597-5600 (2003).
  • [27] H. Gao, B. Ji, M.J. Buehler, and H. Yao, "Flaw tolerant hulk and surface nanostructures of biological systems", Mech. Chem. Biosys. 1, 37-52 (2004).
  • [28] H. Gao and S. Chen, "Flaw tolerance in a thin strip under tension", J. App. Mech. 72, 732-737 (2005).
  • [29] C.Y. Hui, N.J. Glassmaker, T. Tang, and A. Jagota, "Design of biomimetic fibrillar interface: 2. Mechanics of enhanced adhesion", J. R. Soc. Interlace 1, 35-48 (2004).
  • [30] M.T. Northen and KL. Turner, "A batch fabricated biomimetic dry adhesive", Nanotech. 16, 1159-1166 (2005).
  • [31] J.A. Greenwood, "Adhesion of elastic spheres", Proc. R. Soc. Land. A 453, 1277-1297 (1997).
  • [32] A. Jagota and S.J. Bennison, "Mechanics of adhesion through a fibrillar microstructure", Integr. Camp. Biol. 42, 1140-1145 (2002).
  • [33] T. Tang, C.Y. Hui, and N.J. Glassmaker, "Can a fibrillar interface be stronger and tougher than a non-fibrillar one?", J. R. Bac. Interlace 2, 505-516 (2005).
  • [34] M. Sitti and RS. Fearing, "Synthetic gecko foot-hair micro/nano-structures as dry adhesives", J. Adhesian Sci. Technol. 17,1055-1073 (2003).
  • [35] C.Y. Hui, A. Jagota, Y.Y. Lin, and E.J. Kramer, "Constraints on microcontact printing imposed by stamp deformation", Langmuir 18, 1394-1407 (2002).
  • [36] A.K Geim, S.V. Dubonos, L.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, and S.Y. Shapoval, "Microfabricated adhesive mimicking gecko foot-hair", Nature Mater. 2, 461-463 (2003).
  • [37] N.J. Glassmaker, A. Jagota, C.Y. Hui, and J. Kim, "Design of biomimetic fibrillar interfaces: 1. Making contact", J. R. Soc. Land. Interlace 1, 23-33 (2004).
  • [38] J. Tada, P.C. Paris, and G.R Irwin, The Stress Analysis al Cracks Handbook, 3rd ed., ASME Press, New York, 2000.
  • [39] K. Kendall, "Thin-film peeling-elastic term", J. Phys. D: Appl. Phys. 8, 1449-1452 (1975).
  • [40] M. Gotch, "Some problems of bonded anisotropic plates wit h cracks along the bond", Int. J. Fract. Mech. 3, 253-265 (1967).
  • [41] J.R Willis, "Fracture mechanics of interfacial cracks", J. I Mech. Phys. Solids 19, 353-368 (1971).
  • [42] T.C.T. Ting, "Explicit solution and invariance of the singularities at an interface crack in anisotropic composites", Int. J. Solids Struct. 22, 965-983 (1986).
  • [43] Z. Suo, "Singularities, interfaces and cracks in dissimilar anisotropic media", Proc. R. Soc. Lond. A 427, 331-358 (1990) .
  • [44] H. Gao, M. Abbudi, and D.M. Barnett, "On interfacial crack-tip field in anisotropic elastic solids", J. Mech. Phys. Solids 40, 393-416 (1992).
  • [45] C. Hwu, "Fracture parameters for the orthotropic bimaterial interface cracks", Engr. Fract. Mech. 45, 89-97 (1993).
  • [46] V. Tvergaard and J.W. Hutchinson, "The relation between crack growth resistance and fracture process parameters in elastic-plastic solids", J. Mech. Phys. Solids 40,1377-1397 (1992).
  • [47] X.P. Xu and A. Needleman, "Numerical simulations of fast crack growth in brittle solids", J. Mech. Phys. Solids 42,1397-1434 (1994).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0025-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.