Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 54, nr 4 | 461-468
Tytuł artykułu

Distribution of potential barrier height local values at Al-SiO2 and Si-SiO2 inter-faces of the metal-oxide-semiconductor structures

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work studies of barrier height local values are presented. Distribution of the gate-oxide E BG(x, y) and semiconductor-oxide EBS(x, y) barrier height local values have been determined using the photoelectric measurement methods. Two methods were used to obtain the local values of the barrier heights: modified Powell-Berglund method and modified Fowler method. Both methods were modified in such a way as to allow deter-mination of the EBG(x, y) and EBS(x, y) distribution over the gale area using a focused UV light beam of a small diameter d = 0.3 mm. Measurements have been made on a series of Al-SiO2-Si(n+) MOS structures with semitransparent (tA1 = 35 nm) square aluminum gale (1 x 1 mm2). It bas been found that the EBG(x, y) distribution bas a characteristic dome-like shape, with highest values at the center of the gate, lower at the gate edges and still lower at gate corners. On the contrary, the EBS (x, y) distribution is of a random character. Also, in this paper, both barrier height measurements have been compared with the photoelectric effective contact potential difference [fi]MS(x, y) measurements. These results show geod agreement between distribution of the barrier heights EBC(x, y) and EBs(x, y) measurements and independenty determined shape of the ef-fective contact potential difference [fi]M S ( x, y) distribution.
Wydawca

Rocznik
Strony
461-468
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • Department of the MOS System Studies, Institute of Electron Technology, 32/46 Lotników Ave., 02-668 Warsaw, Poland, kpisk@ite.waw.pl
Bibliografia
  • [1] H.M. Przewlocki, A. Kudla, D. Brzezinska, and H.Z. Massoud, “Distribution of the contact-potential difference local values over the gate area of MOS structures”, Microelectronic Engineering 72, 165–173 (2004).
  • [2] A. Kudla, H.M. Przewlocki, L. Borowicz, D. Brzezinska, and W. Rzodkiewicz, “Photoelectrical measurements of the local value of the contact-potential difference in metal-insulatorsemiconductor (MIS) structures”, Thin Solid Films 450, 203–206 (2004).
  • [3] H.M. Przewlocki, “Theory and applications of internal photoemission in the MOS system at low electric fields”, Sol. State Electronics 45, 1241–1250 (2001).
  • [4] C.H. Bjorkman, J.T. Fitch, and G. Lucovsky, “Correlation between midgap interface state density and thickness-averaged oxide stress and strain at Si/SiO2 interfaces formed by thermal oxidation of Si”, Appl. Phys. Lett. 56 (20), 1983–1985 (1990).
  • [5] S.M. Hu, “Stress-related problems in silicon technology”, J. Appl. Phys. 70 (6), R53-R80 (1991).
  • [6] H.M. Przewlocki and H.Z. Massoud, “The effects of stress annealing in nitrogen on the effective contact-potential difference, charges, and traps at the Si/SiO2 interface of metaloxide-semiconductor devices”, J. Appl. Phys. 92 (4), 2198–2201 (2002).
  • [7] I. De Wolf, H. E. Maes, and S. K. Jones, “Stress measurements in silicon devices through Raman spectroscopy: bridging the gap between theory and experiment”, J. Appl. Phys. 79 (9), 7148–7156 (1996).
  • [8] K.F. Dombrowski, I. deWolf, and B. Dietrich, “Stress measurements using ultraviolet micro-Raman spectroscopy”, J. Appl. Phys. 75 (16), 2450–2451 (1999).
  • [9] A. Kudla, “Fotoelectric methods for determining the height of potential barriers in the MOS structure”, Works of the Institute of Electron Technology 5–7, 7–115 (1998), (in Polish).
  • [10] E.H. Nicollian and J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, New York, 1982.
  • [11] R.J. Powell and C.N. Berglund, “Photoinjection into SiO2: use of optical interference to determine electron and hole contribution”, J. Appl. Phys. 40, 5093–5101 (1969).
  • [12] R. J. Powell, “Interface barrier energy determination from voltage dependence of photoinjected currents”, J. Appl. Phys. 41, 2424–2432 (1970).
  • [13] R. J. Powell and C. N. Berglund, “Photoinjection studies of charge distributions in oxides of MOS structures”, J. Appl. Phys. 42, 4390–4397 (1971).
  • [14] H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures”, Phys. Rev. 38, 45–56 (1931).
  • [15] V. Afanase’ev and V.K. Adamchuk, “Internal photoemission spectroscopy of semiconductor-insulator interfaces”, Progress in Surface Sci. 41, 111 (1992).
  • [16] H.M. Przewlocki, “Internal photoemission in the MOS system at low electric fields in the dielectric. Model and application”, Microel. Reliab. 40 (4–5), 581–584 (2000).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0016-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.