Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 54, nr 2 | 199-208
Tytuł artykułu

Formation of texture inhomogeneity in severely plastically deformed copper

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of the crystallographic texture in copper subjected to severe plastic deformation (SPD) by means of high pressure torsion (HPT) and equal-channel angular pressing (ECAP) was experimentally investigated and analyzed by means of computer modelling. It was demonstrated, that the texture developed in HPT and ECAP Cu is characterized by significant inhomogeneity. Therefore, the analysis focused on the study of the texture distribution and its inhomogeneity in sample space. The detailed texture analysis, based on the X-ray diffraction technique, led to important observations concerning the localization of the maximum texture gradient and the regularity of its changes related to the parameters of the applied deformation. The obtained results provided the basis for certain conclusions concerning complex texture changes in SPD Cu.
Wydawca

Rocznik
Strony
199-208
Opis fizyczny
Bibliogr. 35 poz., 9 rys., 7 tab.
Twórcy
  • Ufa State Aviation Technical University, 12 K. Marx St., Ufa, Russia, iva@mail.rb.ru
Bibliografia
  • [1] R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation”, Prog. Mat. Sci. 45, 103 (2000).
  • [2] O.V. Mishin, V.Y. Gertsman, R.Z. Valiev, and G. Gottstein, “Grain boundary distribution and texture in ultrafine grained copper produced by severe plastic deformation”, Scripta Mater. 35, 873 (1996).
  • [3] I.V. Alexandrov, A.A. Dubravina, A.R. Kilmametov, V.U. Kazyhanov, and R.Z. Valiev, “Textures in nanostructured metals processed by severe plastic deformation”, Metals and Materials Int. 9, 151 (2003).
  • [4] V.M. Segal, “Equal channel angular extrusion: from macromechanics to structure formation”, Mater. Sci. Eng. A 271, 322 (1999).
  • [5] Y. Iwahashi, J.Wang, Z. Horita, M. Nemoto, and T.G. Langdon, “Principle of equal channel angular pressing for the processing of ultra-fine grained materials”, Scripta Mater. 35, 143 (1996).
  • [6] P.W. Bridgman, Studies in Large Plastic Flow and Fracture, McGraw-Hill, New-York, 1952.
  • [7] A.V. Korznikov, Y.V. Ivanisenko, D.V. Laptionok, I.M. Safarov, V.P. Pilyugin, and R.Z. Valiev, “Influence of severe plastic deformation on structure and phase composition of carbon steel”, NanoStructured Materials 4, 159 (1994).
  • [8] I.V. Alexandrov, A.A. Dubravina, and H.S. Kim, “Nanostructure formation in copper subjected to high-pressure torsion”, Defect and Diffusion Forum 208–209, 229 (2002).
  • [9] A. Vorhauer and R. Pippan, “On the homogeneity of deformation by high pressure torsion”, Scripta Mater. 51, 921 (2004).
  • [10] M.J. Zehetbauer, H.P. Stuwe, A. Vorhauer, E. Schafler, and J. Kohout, “The role of hydrostatic pressure in Severe plastic deformation”, Advan. Engin. Mater. 5, 330 (2003).
  • [11] S. Li, I.J. Beyerlein, and M.M. Bourke, “Texture formation during ECAE of fcc and bcc materials: comparison with simple shear”, Mater. Sci. Eng. A 394, 66 (2005).
  • [12] L.S. Tóth, R.A. Massion, L. Germain, S.C. Baik, and S. Suwas, “Analysis of texture evolution in equal channel angular extrusion of copper using a new flow field”, Acta Mater. 52, 1885 (2004).
  • [13] L.S. Toth, “Texture evolution in severe plastic deformation by equal channel angular extrusion”, Proc. of the 2nd Inter. Conf. on Nanomaterials by Severe Plastic Deformation: Fundamentals – Processing – Applications – NanoSPD2, Wien, 281 (2002).
  • [14] E.F. Rauch and L. Dupuy, “Textural evolution during equal channel angular extrusion versus planar simple shear”, Proc. of the 2nd Inter. Conf. on “Nanomaterials by Severe Plastic Deformation: Fundamentals – Processing – Applications – NanoSPD2, Wien, Austria, 297 (2002).
  • [15] J.T. Bonarski, I.V. Alexandrov, and L. Tarkowski, “Development of crystallographic texture and microstructure in Cu and Ti, subjected to equal-channel angular pressing”, Proc. of the 2nd Inter. Conf. on Nanomaterials by Severe Plastic Deformation: Fundamentals – Processing – Applications – NanoSPD2, Wien, 315 (2002).
  • [16] A. Gholinia, P.Bate, and P.B. Prangnell, “Modelling texture development during ECAE of Aluminium”, Acta Mater. 50, 2121 (2002).
  • [17] J. Qin, H. Jun-Hyun, Z. Guoding, and Jae-Chul Lee, “Characteristic of texture evolution induced by equal channel angular pressing in 6061 aluminum sheets”, Scripta Mater. 51, 185 (2004).
  • [18] W.Q. Cao, A. Godfrey, and Q. Liu, “EBSP investigation of microstructure and texture evolution during equal channel angular pressing of aluminium”, Mater. Sci. Eng. A 361, 9 (2003).
  • [19] I.J. Beyerlein, R.A. Lebensohn, and C.N. Tóme, “Modelling texture and microstructural evolution in the equal channel angular extrusion process”, Mater. Sci. Eng. A 345, 122 (2003).
  • [20] T.R. McNelley, D.L. Swisher, Z. Horita, and T.G. Langdon, “Influence of processing route on microstructure and grain bound-Bull. Pol. Ac.: Tech. 54(2) 2006 207 I.V. Alexandrov, M.V. Zhilina, and J.T. Bonarski ary development during equal-channel angular pressing of pure aluminum”, Proc. of Ultra fine grained materials II, ed. Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran and T.C. Lowe in: The Minerals, Metals and Materials Society, 505 (2002).
  • [21] U.F. Kocks, C.N. Tome, and H.R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect, 676 Cambridge University Press, Cambridge, (1998).
  • [22] I.V. Alexandrov, I.N. Budilov, G. Krallics, H.S. Kim, S.C. Joon, A.A. Smolyakov, A.I. Korshunov, and V.P. Solovyev, “Simulation of equal channel angular extrusion”, Proc. of the 3rd International Conference on Nanomaterials by Severe Plastic Deformation, Fukuoka, Japan, 201 (2005).
  • [23] I.V. Alexandrov, M.V. Zhilina, A.V. Scherbakov, A.I. Korshunov, P.N. Nizovtsev, A.A. Smolykov, V.P. Solovyev, I.J. Beyerlein, and R.Z. Valiev, “Formation of crystallographic texture during severe plastic deformation”, Archives of Metallurgy and Materials 50 (2), 281 (2005).
  • [24] L.S. Tóth, “Modelling of strain hardening and microstructural evolution in ECAP”, Computational Mater. Science 32, 568 (2005).
  • [25] S. Li, I.J. Beyerlein, D.J. Alexander, and S.C. Vogel, “Texture evolution during multi-pass equal channel angular extrusion of copper: Neutron diffraction characterization and polycrystal modelling”, Acta Mater. 53, 2111 (2005).
  • [26] C.N. Tome, G.R. Canova, U.F. Kock, N. Christodoulou, and J.J. Jonas, “The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals”, Acta Metal. 32 (10), 1637 (1984).
  • [27] A.I. Abakumov, A.V. Pevnitsky, V.P. Solovyev, and I.V. Zbababakhin, “DRAKON code for 2D and 3D simulations of elastic-plastic flows under shock-wave load”, in: Scientific Readings. Proceedings of the Intern. Conf., Snezhinsk, Russia, 227 (1995).
  • [28] K. Pawlik and P. Ozga, LaboTex: The Texture Analysis Software, “Göttinger Arbeiten zur Geologie und Paläontologie”, SB4 (1999).
  • [29] M.J. Zehetbauer, J. Kohout, E. Schafler, F. Sachslehner, and A.A. Dubravina, “Plastic deformation of nickel under high hydrostatic pressure”, J. Alloys and Compounds 378, 329 (2004).
  • [30] E.V. Kozlov, A.N. Zhdanov, L.N. Ignatenco, N.A. Popova, Yu.F. Ivanov, and N.A. Koneva, “Structural evolution of ultrafinegrained copper and copper-based alloy during plastic deformation”, Proceedings of 2002 TMS Annual Meeting in Seattle, Washington, 419 (2002).
  • [31] A.N. Tyumentsev, Yu.P. Pinzhin, M.V. Tretyak, A.D. Korotaev, I.A. Ditenberg, R.Z. Valiev, R.K. Islamgaliev, and A.V. Korznikov, “Evolution of defect substructure of metal alloys at microscopic and mesoscopic level under torsion”, Theoret. Appl. Fracture Mechanics 35, 155 (2001).
  • [32] H.S. Kim, S.I. Hong, Y.S. Lee, A.A. Dubravina, and I.V. Alexandov, “Deformation behaviour of copper during a high pressure torsion process”, J. Materials Processing Technology 142, 334 (2003).
  • [33] A.A. Gazder, F.D. Torre, C.F. Gu, C.H.J. Davies, and E.V. Pereloma, “Microstructure and texture evolution of bcc and fcc metals subjected to equal channel angular extrusion”, Mater. Sci. Eng. A 415, 126-139 (2006).
  • [34] M. Seefeldt and P.V. Houtte, “Grain subdivision and local texture evolution studied by means of a coupled substructuretexture evolution model”, Materials Science Forum 408–412, 433 (2002).
  • [35] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, “The shearing characteristics associated with equalchannel angular pressing”, Mater. Sci. Eng. A 257, 328 (1998).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0014-0099
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.