Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | Vol. 53, nr 2 | 139-149
Tytuł artykułu

Growth of MOCVD HgCdTe heterostructures for uncooled infrared photodetectors

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper recent progress at VIGO/MUT (Military University of Technology) MOCVD Laboratory in the growth of Hg1-xCdx Te (HgCdTe) multilayer heterostructures on GaAs/CdTe substrates is presented. The optimum conditions for the growth of single layers and complex multilayer heterostructures have been established. One of the crucial stages of HgCdTe epitaxy is CdTe nucleation on GaAs substrate. Successful composite substrates have been obtained with suitable substrate preparation, liner and susceptor treatment, proper control of background fluxes and appropriate nucleation conditions. The other critical stage is the interdiffused multilayer process (IMP). The growth of device-quality HgCdTe heterostructures requires complete homogenization of CdTe-HgTe pairs preserving at the same time suitable sharpness of composition and doping profiles. This requires for IMP pairs to be very thin and grown in a short time. Arsenic and iodine have been used for acceptor and donor doping. Suitable growth conditions and post growth anneal is essential for stable and reproducible doping. In situ anneal seems to be sufficient for iodine doping at any required level. In contrast, efficient As doping with near 100% activation requires ex situ anneal at near saturated mercury vapours. As a result we are able to grow multilayer fully doped (100) and (111) heterostructures for various infrared devices including photoconductors, photo electromagnetic and photovoltaic detectors. The present generation of uncooled long wavelength infrared devices is based on multijunction photovoltaic devices. The technology steps in fabrication of devices are described. It is shown that near-BLIP performance is possible to achieve at c.a 230 K with optical immersion. These devices are especially promising as 7.8-9.5-J-[mu]m detectors, indicating the potential for achieving detectivities above 10 do potęgi 9 cmHz1/2/W.
Wydawca

Rocznik
Strony
139-149
Opis fizyczny
Bibliogr. 22 poz., 9 rys.
Twórcy
autor
autor
autor
Bibliografia
  • [1] J. Piotrowski, W. Galus and M. Grudzien, “Near roomtemperature IR photodetectors”, Infrared Phys. 31, 1–48 (1990).
  • [2] J. Piotrowski, “Uncooled operation of IR photodetectors”, Opto-Electron. Rev. 12, 111–122 (2004).
  • [3] J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors”, Infrared Phys. Technol. 46, 115–131 (2004).
  • [4] K. Adamiec, M. Grudzien, Z. Nowak, J. Pawluczyk, J. Piotrowski, J. Antoszewski, J. Dell, C. Musca and L. Faraone, “Isothermal vapour phase epitaxy as a versatile technology for infrared photodetectors”, Proc. SPIE 2999, 34–43 (1997).
  • [5] P. Norton, “HgCdTe infrared detectors”, Opto-Electron. Rev. 10, 159–174 (2002).
  • [6] L. Colombo, R.R. Chang, C.J. Chang, and B.A. Baird”, Growth of Hg-based alloys by the travelling heater method,” J. Vac. Sci. Technol. A6, 2795–2799 (1988).
  • [7] S.J.C. Irvine, “Metal-organic vapour phase epitaxy”, Narrow-gap II–VI Compounds for Optoelectronic and Electromagnetic Applications, pp. 71–96, edited by P. Capper, Chapman & Hall, London, 1997.
  • [8] O.K. Wu, T.J. de Lyon, R.D. Rajavel, and J.E. Jensen, “Molecular beam epitaxy of HgCdTe”, in Narrow-Gap II–VI Compounds for Optoelectronic and Electromagnetic Applications, pp. 97–130, edited by P. Capper, Chapman & Hall, London, 1997.
  • [9] W.E. Tennant, C.A. Cockrum, J.B. Gilpin, M.A. Kinch, M. B. Reine and R. P. Ruth “Key issues in HgCdTe-based focal plane arrays: An industry perspective”, J. Vac. Sci. Technol. 10, 1359–1369(1992).
  • [10] L.M. Smith and J. Thompson, “Metal organic chemical vapour deposition (MOCVD) of cadmium telluride, mercury telluride and cadmium mercury telluride”, Chemtronics 4, 60 (1989).
  • [11] S.A. Svoronos, W.W Woo, S.J.C. Irvine, H.O. Sankur, and J. Bajaj, “A model of the interdiffused multilayer process”, J. Electron. Mater. 25, 1561–1571 (1996).
  • [12] C. Theodoropoulos, N.K. Ingle, and T.J. Mountziaris: “Computational studies of the transient behavior of horizontal MOVPE reactors”, J. Cryst. Growth 170, 72–76 (1997).
  • [13] H.R. Vydyanath, “Donor and acceptor dopants in Hg1¡xCdxTe alloys”, J. Vac. Sci. Technol. B9, 1716–1723 (1991).
  • [14] L. Svob, I. Cheye, A. Lusson, D. Ballutaud, J.F. Rommeluere and Y. Marfaing, “Crystallographic orientation dependence of As incorporation in MOVPE-grown CdTe and corresponding acceptor electrical state activation”, J. Cryst. Growth 184/185, 459–464 (1998).
  • [15] J. Piotrowski and A. Rogalski, “Photoelectromagnetic, magnetoconcentration and Dember infrared detectors” in Narrow-Gap II–VI Compounds and Electromagnetic Applications, pp. 506–525, edited by P. Capper, Chapman & Hall, London 1997.
  • [16] J. Piotrowski, W. Gawron, and Z. Djuric, “New generation of near-room-temperature photodetectors”, Opt. Eng. 33, 1413–1421 (1994).
  • [17] J. Piotrowski and W. Gawron, “Extension of longwavelength IR photovoltaic detector operation to near roomtemperatures”, Infrared Phys. Technol. 36, 1045–1051 (1995).
  • [18] C. Musca, J. Antoszewski, J. Dell, L. Faraone, J. Piotrowski, and Z. Nowak, “Multi-heterojunction large area HgCdTe long wavelength infrared photovoltaic detector for operation at near room temperature”, J. Electron. Mater. 27, 740–746 (1998).
  • [19] J. Piotrowski, Z. Nowak, J. Antoszewski, C. Musca, J. Dell, and L. Faraone, “A novel multi-heterojunction HgCdTe long-wavelength infrared photovoltaic detector for operation under reduced cooling conditions”, Semicond. Sci. Technol. 13, 1209–1214 (1998).
  • [20] W. Gawron and A. Rogalski, “HgCdTe buried multijunction photodiodes fabricated by the liquid phase epitaxy”, Infrared Phys. Technol. 43, 157–163 (2002).
  • [21] J. Piotrowski, M. Grudzien, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg1¡xCdxTe LWIR detectors”, Proc. SPIE 4130, 175–184 (2000).
  • [22] J. Piotrowski, P. Brzozowski, and K. Józwikowski, “Stacked multijunction photodetectors of long wavelength radiation”, J. Electron. Mater. 32, 672–676 (2003).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0005-0048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.