Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | Vol. 53, nr 2 | 113-122
Tytuł artykułu

High power QW SCH InGaAs/GaAs lasers for 980-nm band

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Strained layer InGaAs/GaAs SCH SQW (Separate Confinement Heterostructure Single Quantum Well) lasers were grown by Molecular Beam Epitaxy (MBE). Highly reliable CW (continuous wave) 980-nm, broad contact, pump lasers were fabricated in stripe geometry using Schottky isolation and ridge waveguide construction. Threshold current densities of the order of Jth = 280 A/cm2 (for the resonator length L = 700 [mu]m) and differential efficiency [eta]= 0.40 W/A (41%) from one mirror were obtained. The record wall-plug efficiency for AR/HR coated devices was equal to 54%. Theoretical estimations of above parameters, obtained by numerical modelling of devices were Jth = 210 A/cm and [eta] = 0.47 W / A from one mirror, respectively. Degradation studies revealed that uncoated and AR/HR coated devices did not show any appreciable degradation after 1500 hrs of CW operation at 35°C heat sink temperature at the constant optical power (50 mW) conditions.
Wydawca

Rocznik
Strony
113-122
Opis fizyczny
Bibliogr. 35 poz., 7 rys.
Twórcy
autor
autor
autor
autor
autor
autor
Bibliografia
  • [1] P. Derry and A. Yariv, “Ultralow-threshold graded-index separate-confinement singlequantum well burried heterostructure (Al,Ga)As lasers with high reflectivity coatings”, Appl. Phys. Lett. 50, 1773 (1987).
  • [2] W.T. Tsang, “Extremely low threshold (Al,Ga)As modified multiquantum well heterostructure lasers grown by molecular beam epitaxy”, Appl. Phys. Lett. 39, 786 (1981).
  • [3] K. Prosyk, J.G. Simmons and J.D. Evans, “Well number, length, and temperature dependence of efficiency and loss in InGaAsP-InP compressively strained MQW ridge wavequide lasers at 1.3 ¹m”, IEEE J. Quantum Electron. QE-33, 1360 (1997).
  • [4] K. Prosyk, J.G. Simmons and J.D. Evans, “A systematic empirical study of the well number and length on the temperature sensitivity of the threshold current in InGaAsP-InP MQW lasers”, IEEE J. Quantum Electron. QE-34, 535 (1998).
  • [5] P.W.A. Mc Ilroy, A. Kurobe and Y. Uematsu, “Analysis and application of theoretical gain curves to the design of multi-quantum well lasers”, IEEE J. Quantum Electron. QE-21, 1958 (1985).
  • [6] A. Kurobe, H. Furuyama, S. Naritsuka, N. Sugiyama, Y. Kokubun and M. Nakamura, “Effects of well number, cavity length, and facet reflectivity on the reduction of threshold current of GaAs/AlGaAs multiquantum well lasers”, IEEE J. Quantum Electron. QE-24, 635 (1988).
  • [7] J.Z. Wilcox, G.L. Peterson, S. Ou, J.J. Yang, M. Jansen and D. Schechter, “Gain- and threshold-current dependence for multiple-quantum well lasers”, J. Appl. Phys. 64, 6564 (1988).
  • [8] S.P. Cheng, F. Brillouet and P. Correc, “Design of quantum well AlGaAs-GaAs stripe lasers for minimization of threshold current-Application to ridge structures”, IEEE J. Quantum Electron. QE-24, 2433 (1988).
  • [9] M. Rosenzweig, M. Mohrle, H. Duser and H. Venghaus, “Threshold-current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers”, IEEE J. Quantum Electron. QE-27, 1804 (1991).
  • [10] H.C. Casey and Jr., M.B. Panish, Heterostructure Lasers, Academic Press, New York, 1978.
  • [11] T. Strite and G. Hoven, “Trends in pump laser diode markets and technology”, Lightwave 16 (2), 55–62 (1999).
  • [12] J.J. Coleman, “Strained-layer quantum well heterostructure lasers”, Thin Solid Films 216, 68–71 (1992).
  • [13] S.D. Offsey, W.J. Schaff, L.F. Lester, L.F. Eastman and S.K. McKernan, “Strained-layer InGaAs-GaAs-AlGaAs lasers grown by molecular beam epitaxy for high speed modulation”, IEEE J. Quantum Electronics QE-27, 1455–1462 (1991).
  • [14] M. Bugajski, M. Kaniewska, K. Reginski, A. Malag, S. Łepkowski and J. Muszalski, “GRIN SCH SQW Al-GaAs/GaAs lasers grown by molecular beam epitaxy: Modeling and operating characteristics”, Proc. SPIE 3186, 310 (1997).
  • [15] M. Bugajski, M. Kaniewska, K. Reginski, J. Muszalski, D. Krynska and A. Litkowiec, “GRIN SCH SQW Al-GaAs/GaAs lasers grown by molecular beam epitaxy”, Electron Technology 29, 346–350 (1996).
  • [16] PICS 3D Instruction Manual, Crosslight Software Inc., CA 1998
  • [17] S.L. Chuang, “Efficient band-structure calculation of strained quantum-wells”, Phys. Rev. B43, 9649–9661 (1991).
  • [18] W.W. Chow, S.W. Koch and M. Sargent III, Semiconductor Laser Physics, Springer-Verlag, Berlin Heidelberg, 1994.
  • [19] K. Reginski and M. Bugajski, “MBE technology of semiconductor quantum well lasers”, Opto-Electron. Rev. 4, 101–116 (1996).
  • [20] J. Katcki, J. Ratajczak, J. Adamczewska, F. Phillip, N.Y. Jin-Phillip, K. Reginski, and M. Bugajski, “Formation of dislocations in InGaAs/GaAs heterostructures”, Physica Status Solidi (a) 171, 275–282 (1999).
  • [21] J. Katcki, J. Ratajczak, F. Phillip, N.Y. Jin-Phillip, M. Shiojiri, K. Reginski and M. Bugajski, “TEM study of the formation of defects in AlGaAs/GaAs and In-GaAs/GaAs heterostructures”, Electron Technology 32, 343–347 (1999),
  • [22] S.L. Chuang, Physics of Optoelectronic Devices, Wiley Interscience Publication, New York, 1995.
  • [23] M. Bugajski and M. Godlewski, “Optical probing of interface disorder in semiconductor nanostructures”, Electron Technology 31, 159–161 (1998).
  • [24] M. Bugajski, B. Mroziewicz, K. Reginski, M. Zbroszczyk and A. Malag, “Optical laser pumps InGaAs/GaAs to the optical waveguide amplifiers EDFA type”, Proc. of the VISymp. Laser Technique, Szczecin-Swinoujscie 1, 137–141 (1999), (in Polish).
  • [25] M. Bugajski, K. Reginski, B. Mroziewicz, J.M. Kubica, P. Sajewicz, T. Piwonski, and M. Zbroszczyk, “High-performance 980-nmstrained-layer InGaAs/GaAs quantumwell lasers”, Optica Applicata 31, 267–271 (2001).
  • [26] T. Piwonski, P. Sajewicz, J.M. Kubica, M. Zbroszczyk, K. Reginski, B. Mroziewicz and M. Bugajski, “Longwavelength strained-layer InGaAs/GaAs quantum-well lasers grown by molecular beam epitaxy”, Microwave and Optical Technology Letters 29, 75–77 (2001).
  • [27] A. Larsson, J. Cody and R.J. Lang, “Strained-layer InGaAs/GaAs/AlGaAs single quantum well lasers with high internal quantum efficiency”, Appl. Phys. Lett. 55, 2268–2270 (1989).
  • [28] A. Larsson, S. Forouhar, J. Cody, R.J. Lang and P.A. Anderson, “A 980 nm pseudomorfic single quantum well laser for pumping erbium-doped optical fiber amplifiers”, IEEE Photonic Technology Letters PTL-2, 540–542 (1990).
  • [29] C. Shieh, J. Mantz, H. Lee, D. Ackley and R. Engelman, “Anomalous dependence of threshold current on stripe width in gain-guided strained-layer InGaAs/GaAs quantum well lasers”, Appl. Phys. Lett. 54, 2521–2523 (1989).
  • [30] K.J. Beernink, P.K. York, J.J. Coleman, “Dependence of threshold current density on quantum well composition for strained-layer InGaAs-GaAs lasers by metalorganic chemical vapor deposition”, Appl. Phys. Lett. 55, 2585–2587 (1989).
  • [31] K.J. Beernink, P.K. York, J.J. Coleman, R.G. Waters, J. Kim and C.M. Wayman, “Characterization of strained-layer InGaAs-GaAs lasers with quantum wells near the critical thickness”, Appl. Phys. Lett. 55, 2167–2169 (1989).
  • [32] H. Horie, H. Ohta and T. Fujimori, “Reliability improvement of 980-nm laser diodes with a new facet passivation process”, IEEE J. Selected Topics in Quantum Electronics 5, 832–838 (1999).
  • [33] M. Okayasu, M. Fukuda, T. Takeshita and S. Uehara, “Stable operation (over 5000 h) of high power 0.98 ¹m InGaAs-GaAs strained quantum well ridge waveguide lasers for pumping Er3+-doped fiber amplifiers”, IEEE Photonic Technology Letters PTL-2, 689–691 (1990).
  • [34] M. Fukuda, M. Okayasu, J. Temmyo and J. Nakano, “Degradation behavior of 0.98-¹m strained quantum well InGaAs/AlGaAs lasers under high-power operation”, IEEE J. Quantum Electronics, QE-30, 471–476 (1994).
  • [35] S.E. Fischer, R.G. Waters, D. Fekete, J.M. Ballantyne, Y.C. Chen and B.A. Soltz, “Long-lived InGaAs quantum well lasers”, Appl. Phys. Lett. 54, 1861–1863 (1989).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG5-0005-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.