Czasopismo
2002
|
Vol. 50, Nr 4
|
361--374
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Fuzzy clustering helps to find natural vague boundaries in data. The fuzzy C-Means (FCM) method is one of the most popular clustering methods based on minimization of a criterion function. However, one of the greatest disadvantages of this method is its sensivity to presence of noise and outliers in data. This paper introduces a new ε-insensitive Fuzzy C-Medians (εFCMed) clustering algorithm. As a special case, this algorithm includes the well-known Fuzzy C-Medians method (FCMed). Performance of the new clustering algorithm is experimentally compared with the Fuzzy C-Means (FCM) and the FCMed methods using synthetic heavy-tailed and overlapped groups in background noise, and the Iris database.
Słowa kluczowe
Rocznik
Tom
Strony
361--374
Opis fizyczny
Bibliogr. 24 poz., 4 rys., 3 tab.
Twórcy
autor
- Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland (Instytut Elektroniki Politechniki Śląskiej)
Bibliografia
- [1] R. O. Duda, P. E. Hart, Pattern classification and scene analysis, John Wiley & Sons, New York 1973.
- [2] B.S. Everitt, Cluster analysis, Arnold, London 1993.
- [3] K. Fukunaga, Introduction to statistical pattern recognition, Academic Press, San Diego 1990.
- [4] J.T. Tou, R.C. Gonzalez, Pattern recognition principles, Adison-Wesley, London 1974.
- [5] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965) 338-353.
- [6] E. H. Ruspini, A new approach to clustering, Inform. Control, 15 (1969) 22-32.
- [7] J.C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated cluster, Journal Cybernetics, 3 (1973) 32-57.
- [8] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York 1982.
- [9] R. Krishnapuram, J.M. Keller, A possibilistic approach to clustering, IEEE Trans. Fuzzy Systems, 1 (1993) 98-110.
- [10] R. N. Davé, Characterization and detection of noise in clustering, Pattern recognition Lett., 12 (1991) 657-664.
- [11] R. J. Hathaway, J.C. Bezdek, Generalized fuzzy c-means clustering strategies using Lp norm distances, IEEE Trans. Fuzzy Systems, 8 (2000) 576-582.
- [12] K. Jajuga, L1-norm based fuzzy clustering, Fuzzy Sets and Systems, 39 (1991) 43-50.
- [13] P.R. Kersten, Fuzzy order statistics and their application to fuzzy clustering, IEEE Trans. Fuzzy Systems, 7 (1999) 708-712.
- [14] P. J. Huber, Robust statistics, Wiley, New York 1981.
- [15] R.N. Davé, R. Krishnapuram, Robust clustering methods: a unified view, IEEE Trans. Fuzzy Systems, 5 (1997) 270-293.
- [16] V. Vapnik, Statistical learning theory, Wiley, New York 1998.
- [17] Y.-C. Ho, R.L. Kashyap, An algorithm for linear inequalities and its applications, IEEE Trans. Elec. Comp., 14 (1965) 683-688.
- [18] Y.-C. Ho, R.L. Kashyap,A class of iterative procedures for linear inequalities, JSSIAM Control, 4 (1966) 112-115.
- [19] E. Anderson, The irises of the gaspe peninsula, Bull. Amer. IRIS Soc, 59 (1935) 2-5.
- [20] A.M. Beinsed, L.O. Hall, J.C. Bezdek, L.P. Clarke, M.L. Silbiger, J. A. Arrington, R.F. Murtagh, Validity-Guided (Re)clustering with application to image segmentation, IEEE Trans. Fuzzy Systems, 4 (1996) 112-123.
- [21] J. Leski, Ordered weighted generalized conditional possibilistic clustring, in: Fuzzy sets and their applications, ed.: J. Chojcan, J. Leski, Silesian University Press, Gliwice (2001) 469-479.
- [22] N.B. Karayiannis, Weighted fuzzy learning vector quantization and weighted generalized fuzzy c-means algorithms, Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, IEEE Press, New York (1996) 1036-1042.
- [23] N.R. Pal, K. Pal, J.C. Bezdek, A mized c-means clustering model, Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, IEEE Press, New York (1997) 11-22.
- [24] N.B. Karayiannis, Soft learning vector quantization and clustering algorithms based on reformulation, Proceedings of the Seventh IEEE International Conference on Fuzzy Systems, IEEE Press, New York (1998) 1441-1446.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG1-0010-0058