Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 11, nr 1 | 117-128
Tytuł artykułu

Uncountability of the group of strong automorphisms of Witt ring of rational numbers

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We use the notion of rational self-equivalence which is a special case of Hilbert symbol equivalence of fields, where both fields are considered to be the field Q of rational numbers. We define a small self-equivalence of the field Q as a special case of small equivalence of fields - a tool for constructing Hilbert-symbol equivalence of fields. We shall show, that one can choose initial sets of prime numbers and then control the processes of extending of small self-equivalence such that uncountable many rational self-equivalences can be constructed. The final conclusion is the corollary deciding that the group of strong automorphisms of Witt ring W(Q) of rational numbers is uncountable.
Słowa kluczowe
Wydawca

Rocznik
Strony
117-128
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
Bibliografia
  • [1] Czogała A., On reciprocity equivalence of quadratic number fields, Acta Arith. 1981, 58 (1), 27- 46.
  • [2] Czogała A., Hilbert-symbol equivalence of global fields, Prace Naukowe Uniwersytetu Śląskiego w Katowicach vol. 1969, Wyd. Uniwersytetu Śląskiego, Katowice 2001 (in Polish).
  • [3] Czogała A., Hilbert-symbol equivalence of global function fields, Mathematica Slovaca 2001, 51, 4, 383-401.
  • [4] Browkin J., Field theory, Biblioteka Matematyczna 49, PWN, Warsaw 1978 (in Polish).
  • [5] Cassels J.W.S., Fröhlich A. (ed.), Algebraic Number Theory, Academic Press, London, New York 1967.
  • [6] Serre J.-P., A Course in Arithmetic, Springer-Verlag, New York, Heidelberg, Berlin 1973.
  • [7] Stępień M., A construction of infinite set of rational self-equivalences, Scientific Issues. Mathematics, XIV: 117-132, Jan Długosz University, Częstochowa 2009.
  • [8] Marshall M., Abstract Witt Rings, volume 57 of Queen's Papers in Pure and Applied Math. Queen's University, Ontario 1980.
  • [9] Stępień M. R., Automorphisms of Witt rings and quaternionic structures, Scientific Research of the Institute of Mathematics and Computer Science Częstochowa University of Technology 2011, 1(10), 231-237.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC6-0018-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.