Czasopismo
2011
|
Vol. 10, nr 1
|
109-121
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We study the properties of fractional differentiation with respect to reflection mapping in a finite interval. The symmetric and anti-symmetric fractional derivatives in a full interval are expressed as fractional differential operators in left or right subintervals obtained by subsequent partitions. These representation properties and the reflection symmetry of the action and variation are applied to derive Euler-Lagrange equations of fractional free motion. Then the localization phenomenon for these equations is discussed.
Rocznik
Tom
Strony
109-121
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
autor
- Institute of Mathematics, Czestochowa University of Technology, Poland, mklimek@im.pcz.pl
Bibliografia
- [1] Kilbas A.A., Srivastawa H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam 2006.
- [2] Klimek M., On Solutions of Linear Fractional Differential Equations of a Variational Type, The Publishing Office of the Czestochowa University of Technology, Czestochowa 2009.
- [3] Diethelm K., The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin 2010.
- [4] Podlubny I., Fractional Differential Equations, Academic Press, San Diego 1999.
- [5] Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York 1993.
- [6] Lakshmikantham V., Leela S., Vasundhara Devi J., Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Cambridge 2009.
- [7] Atanackovic T.M., Stankovic B., On a class of differential equations with left and right fractional derivatives, ZAMM Z. Angew. Math. Mech. 2007, 87, 537-546.
- [8] Atanackovic T.M., Stankovic B., On a differential equation with left and right fractional fractional derivatives, Fract. Calc. Appl. Anal. 2007, 10, 138-150.
- [9] Thabet Maraaba (Abdeljawad), Baleanu D., Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, J. Math. Phys. 2008, 49, 083507.
- [10] Klimek M., On analogues of exponential functions for anti-symmetric derivatives, Comput. Math. Appl. 2010, 59, 1709-1717.
- [11] Klimek M., Existence-uniqueness result for a certain equation of motion in fractional mechanics, Bull. Pol. Acad. Sci.: Tech. Sciences 2010, 58, 573-581.
- [12] Ferreira R.A.C., Torres D.F.M., Fractional h-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math. 2011, 5, 110-121.
- [13] Riewe F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E 1996, 53, 1890-1899.
- [14] Riewe F., Mechanics with fractional derivatives, Phys. Rev. E 1997, 55, 3582-3592.
- [15] Agrawal O.P., Formulation of Euler-Lagrange equations for fractional variational problem, J. Math. Anal. Appl. 2002, 272, 368-379.
- [16] Klimek M., Fractional sequential mechanics - models with symmetric fractional derivative, Czech. J. Phys. 2001, 51, 1348-1354.
- [17] Klimek M., Lagrangian and Hamiltonian fractional sequential mechanics, Czech. J. Phys. 2002, 52, 1247-1253.
- [18] Klimek M., Lagrangian fractional mechanics - a non-commutative approach, Czech. J. Phys. 2005, 55, 1447-1454.
- [19] Klimek M., Solutions of Euler-Lagrange equations in fractional mechanics, Proceedings of the XXVI Workshop on Geometrical Methods in Physics, Białowieża 2006, Eds. P. Kielanowski, A. Odzijewicz, T. Voronov, 2007, Vol. 956 of AIP Conference Proceedings, American Institute of Physics, 73-78.
- [20] Agrawal O.P., Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A: Math. Theor. 2007, 40, 6287-6303.
- [21] Atanackovic T.M., Konjik P., Pilipovic S., Variational problems with fractional derivatives: Euler-Lagrange equations, J. Phys. A: Math. Theor. 2008, 41, 095201.
- [22] Cresson J., Fractional embedding of differential operators and Lagrangian systems, J. Math. Phys. 2007, 48, 033504.
- [23] Agrawal O.P., Generalized variational problems and Euler-Lagrange equations, Comput. Math. Appl. 2010, 59, 1852-1864.
- [24] Almeida R., Torres D.F.M., Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun. Nonlinear Sci. Numer. Simulat. 2011, 16, 1490-1500.
- [25] Malinowska A.B., Torres D.F.M., Generalized natural boundary conditions for fractional variational problems in terms of Caputo derivative, Comput. Math. Appl. 2010, 59, 3110-3116.
- [26] Almeida R., Pooseh S., Torres D.F.M., Fractional variational problems depending on indefinite integrals, Nonlinear Anal. TMA, 2011, doi: 10.1016/j.na.2011.02.028.
- [27] Baleanu D., Avkar T., Lagrangians with linear velocities within Riemann-Liouville fractional derivatives. Nuovo Cim. B 2004, 119, 73-79.
- [28] Baleanu D., Agrawal O.P., Fractional Hamilton formalism within Caputo's derivative, Czech. J. Phys. 2006, 56, 1087-1092.
- [29] Baleanu D., Muslish S., Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives, Physica Scripta 2005, 72, 119-121.
- [30] Baleanu D., Trujillo J.J., A new method of finding the fractional Euler-Lagrange and Hamilton equations within fractional Caputo derivatives, Commun. Nonlinear Sci. Numer. Simulat. 2010, 15, 1111-1115.
- [31] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon & Breach Science Publ., New York 1993.
- [32] Klimek M., On reflection symmetry and its application to the Euler-Lagrange equations in fractional mechanics, Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 28-31 August 2011, Washington, DC. Paper DETC2011-47721.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC6-0015-0012