Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 10, nr 1 | 101-108
Tytuł artykułu

Comparison of analytic hierarchy process and some new optimization procedures for ratio scaling

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Deriving true priority vectors from intuitive pairwise comparison matrices constitutes a key part of the Analytic Hierarchy Process. The Eigenvalue Method, commonly applied in the Analytic Hierarchy Process, is the most popular concept in the process of ratio scaling. It is known that the Eigenvalue Method captures transitivity in matrices that are not consistent in a unique way. However, there are other methods such as statistical estimation techniques and methods based on constrained optimisation models that are equally interesting. This article compares two novel methods for priority vectors deriving, which combine the eigenvalue concept with a constrained optimisation based approach. Evidence is provided that contrary to the logarithmic least squares method, they coincide with the Eigenvalue Method in capturing the ratio scale rank order inherent in inconsistent pairwise comparison judgments.
Wydawca

Rocznik
Strony
101-108
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
Bibliografia
  • [1] Basak I., Comparison of statistical procedures in analytic hierarchy process using a ranking test, Mathematical Computation Modelling 1998, 28, 105-118.
  • [2] Crawford G., Williams C.A., A note on the analysis of subjective judgment matrices, Journal of Mathematical Psychology 1985, 29, 387-405.
  • [3] Lipovetsky S., Tishler, A., Interval estimation of priorities in the AHP, European Journal of Operational Research 1997, 114, 153-164.
  • [4] Bryson N., A goal programming method for generating priority vectors, Journal of the Operational Research Society 1995, 46, 641-648.
  • [5] Cook W.D., Kress M., Deriving weights from pairwise comparison ratio matrices: An axiomatic approach, European Journal of Operational Research 1988, 37, 355-362.
  • [6] Hashimoto A., A note on deriving weights from pairwise comparison ratio matrices, European Journal of Operational Research 1994, 73, 144-149.
  • [7] Lin C-C., An enhanced goal programming method for generating priority vectors, Journal of the Operational Research Society 2006, 57, 1491-1496.
  • [8] Sun L., Greenberg B.S., Multiple group decision making: optimal priority synthesis from pairwise comparisons, Journal of Optimisation Theory Application 2006, 130(2), 317-338.
  • [9] Budescu D.V., Zwick R., Rapoport A., Comparison of the analytic hierarchy process and the geometric mean procedure for ratio scaling, Applied Psychological Measurement 1986, 10, 69-78.
  • [10] Dong Y., Xu Y., Li H., Dai M., A comparative study of the numerical scales and the prioritization methods in AHP, European Journal of Operational Research 2008, 186, 229-242.
  • [11] Fichtner, J., On deriving priority vectors from matrices of pairwise comparisons, Socio- Economic Planning Science 1986, 20, 341-345.
  • [12] Hovanov N.V., Kolari J.W., Sokolov M.V., Deriving weights from general pairwise comparison matrices, Mathematical Social Sciences 2008, 55, 205-220.
  • [13] Saaty T.L., Hu G., Ranking by eigenvector versus other methods in the Analytic Hierarchy Process, Applied Mathematics Letters 1998, 11(4), 121-125.
  • [14] Saaty T.L., Vargas L.G., Comparison of eigenvalue, logarithmic least square and least square methods in estimating ratio, Journal of Mathematical Modelling 1984, 5, 309-324.
  • [15] Zahedi F., A simulation study of estimation methods in the analytic hierarchy process, Socio-Economic Planning Science 1986, 20, 347-354.
  • [16] Srdjevic B., Combining different prioritisation methods in the analytic hierarchy process synthesis, Computers and Operational Research 2005, 32, 1897-1919.
  • [17] Choo E.U., Wedley W.C., A common framework for deriving preference values from pairwise comparison matrices, Computers & Operation Research 2004, 31, 893-908.
  • [18] Barzilai J., Cook W.D., Golany B., Consistent weights for judgments matrices of the relative importance of alternatives, Operations Research Letters 1987, 6(3), 131-134.
  • [19] Crawford G.B., The geometric mean procedure for estimating the scale of a judgment matrix, Mathematical Modelling 1987, 9(3-5), 327-334.
  • [20] Saaty T.L., The Analytic Hierarchy Process, McGraw Hill, New York 1980.
  • [21] Grzybowski A.Z., Goal programming approach for deriving priority vectors - some new ideas, Scientific Research of the Institute of Mathematics and Computer Science 2010, 1(9), 17-27.
  • [22] Grzybowski A.Z., Estimating priority weights - an optimization procedures based on Saaty's eigenvalue method, private communication, 2010.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC6-0015-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.