Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 9, nr 2 | 17-24
Tytuł artykułu

Fractional Euler-Lagrange equations : numerical solutions and applications of reflection operator

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work numerical solutions of fractional Euler-Lagrange equations describing free motion are considered. This type of equations contains a composition of left and right fractional derivatives. A reflection operator is applied to obtain relations between the Euler-Lagrange equations. In addition we verify the dependence between the respective numerical schemes using the same operator. In the final part of paper the examples of the numerical solutions are shown.
Wydawca

Rocznik
Strony
17-24
Opis fizyczny
Bibliogra. 14 poz., rys.
Twórcy
Bibliografia
  • [1] Riewe F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E 1996, 53, 1890-1899.
  • [2] Agrawal O.P., Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl. 2002, 272, 368-379.
  • [3] Agrawal O.P., Fractional variational calculus and the transversality conditions, J. Phys. A: Math. Gen. 2006, 39, 10375-10384.
  • [4] Agrawal O.P., Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A: Math. Theor. 2007, 40, 6287-6303.
  • [5] Klimek M., Lagrangean and Hamiltonian fractional sequential mechanics, Czech. J. Phys. 2002, 52, 1247-1253.
  • [6] Baleanu D., Avkar T., Lagrangians with linear velocities within Riemann-Liouville fractional derivatives, Nuovo Ciemnto B 2004, 119, 73-79.
  • [7] Cresson J., Fractional embedding of differential operators and Lagrangian systems, J. Math. Phys. 2007, 48, 033504.
  • [8] Klimek M., Solutions of Euler-Lagrange equations in fractional mechanics, AIP Conference Proceedings 956. XXVI Workshop on Geometrical Methods in Physics. Białowieża 2007. Eds. P. Kielanowski, A. Odzijewicz, M. Schlichenmaier, Voronov T. 2007, 73-78.
  • [9] Klimek M., G-Meijer functions series as solutions for certain fractional variational problem on a finite time interval, Journal Europeen des Systemes Automatises (JESA), 2008, 42, 653-664.
  • [10] Błaszczyk T., Zastosowanie równania frakcyjnego oscylatora do modelowania efektu pamięci w materii granulowanej, rozprawa doktorska, Politechnika Częstochowska 2010.
  • [11] Błaszczyk T., Application of the Rayleigh-Ritz method for solving fractional oscillator equation, Scientific Research of the Institute of Mathematics and Computer Science 2009, 2(8), 29-36.
  • [12] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam 2006.
  • [13] Samko S.G., Kilbas A.A., Marichev O.I., Integrals and Derivatives of Fractional Order and Same of their Applications, Gordon and Breach, London 1993.
  • [14] Oldham K.B., Spanier J., The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York 1974.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC6-0003-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.