Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Generating collision-free trajectories of redundant manipulators
Języki publikacji
Abstrakty
W pracy przedstawiono problem generowania trajektorii kinematycznie redundantnych manipulatorów na poziomie sprzężenia zwrotnego. W rozważaniach uwzględniono ograniczenia na sterowania robota. Dla wyprowadzenia schematu sterowania zastosowano teorię stabilności Lapunowa oraz rachunek wariacyjny. Poprzez użycie metody zewnętrznych funkcji kary zapewniono wykonanie dodatkowego zadania, tj. na przykład uniknięcia kolizji ogniw manipulatora z przeszkodami w trakcie ruchu. Obszerne obliczenia komputerowe ilustrują działanie zaproponowanych schematów sterowania, zarówno w przestrzeni roboczej bez oraz z przeszkodami.
This paper deals with the problem of generating a trajectory at the control-loop level by a kinematically redundant manipulator. The constraints imposed on the robot actuator controls are taken into account. The Lyapunov stability theory and/or the calculus of variations are used to derive the control scheme. Through the use of exterior penalty function approach, an additional objective to be fulfilled by the robot, i.e. a collision avoidance of the manipulator links with obstacles is ensured. The extensive computer simulation results illustrate the trajectory performance of the proposed control scheme in both an obstacle-free work space and a work space including obstacles.
Czasopismo
Rocznik
Tom
Strony
55-68
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Uniwersytet Zielonogórski, Instytut Organizacji i Zarządzania, ul. Podgórna 50, 65-246 Zielona Góra, galicki@imsid.uni-jena.de
Bibliografia
- [1] Bobrow J.E., Dubowsky S., Gibson J.S.: Time-Optimal Control of Robotic Manipulators. Int. Journal of Robotics Research, vol. 4, nr 3, 1985, s. 3-17.
- [2] Chen Y., Desrochers A.A.: Structure of Minimum-Time Control Law for Robotic Manipulators with Constrained Paths. Proc. of the IEEE International Conference on Robotics and Automation, 1989, s. 971-976.
- [3] Chuang J.-H.: Potential-Based Modelling of Three-Dimensional Workspace for Obstacle Avoidance. IEEE Trans, on Robotics and Automation, vol. 14, nr 5, 1998, s. 778-785.
- [4] Conn R.A., Kam M.: Robot Motion Planning on N-Dimensional Star Worlds among Moving Obstacles. IEEE Trans. on Robotics and Automation, vol. 14, nr 2, 1998, s. 320-325.
- [5] Galicki M.: The Structure of Time Optimal Controls for Kinematically Redundant Manipulators with End-Effector Path Constraints. Proc. of the IEEE International Conference on Robotics and Automation, 1998, s. 101-106.
- [6] Galicki M.: Time-Optimal Controls of Kinematically Redundant Manipulators with Geometric Constraints. IEEE Trans. on Robotics and Automation, vol. 16, nr 1, 2000, s. 89-93.
- [7] Galicki M.: The Planning of Robotic Optimal Motions in the Presence of Obstacles. Int. Journal of Robotics Research, vol. 17, nr 3, 1998, s. 248-259.
- [8] Galicki M.: Wybrane metody planowania optymalnych trajektorii robotów manipulacyjnych. WNT, Warszawa 1999.
- [9] Galicki M., Pająk L: Optimal Motion of Redundant Manipulators with State Equality Constraints. Proc. of the IEEE Int. Symposium on Assembly and Task Planning, 1999, s. 181-185.
- [10] Gelfand I.M., Fomin S.: Rachunek wariacyjny. PWN, Warszawa 1979.
- [11] Gilbert E.G., Johnson D.W.: Distance Functions and Their Application to Robot Path Planning. IEEE Journal of Robotics and Automation, vol. 1, 1985, s. 21-30.
- [12] Khatib O.: Real-Time Obstacle Avoidance for Manipulators and Mobile Manipulators. Int. Journal of Robotics Research, vol. 5, nr 1, 1986, s. 90-98.
- [13] Kim J.-O., Khosla P.K.: Real-Time Obstacle Avoidance Using Harmonie Potential Functions. IEEE Trans, on Robotics and Automation, vol. 8, nr 3, 1992, s. 338-349.
- [14] Krstic M., Kanellakopoulos L, Kokotovic P.: Nonlinear and Adaptive Control Design. Wiley, Nowy Jork 1995.
- [15] Latombe J.C.: Robot Motion Planning. Kluwer Academic Publishers, Dordrecht 1991.
- [16] McCarthy J.M., Bobrow J.E.: The Number of Saturated Actuators and Constraint Forces During Time-Optimal Movement of a General Robotic System. IEEE Trans, on Robotics and Automation, vol. 8, nr 3, 1992, s. 407-409.
- [17] Nenchev D.: Tracking Manipulator Trajectories with Ordinary Singularities. A Null Space--Based Approach. Int. Journal of Robotics Research, vol. 14, nr 4, 1995, s. 399-404.
- [18] Pająk L, Galicki M.: The Planning of Suboptimal Collision-Free Robotic Motions. Proc. of the IEEE IES First Workshop on Robot Motion and Control, 1999, s. 229-234.
- [19] Pfeiffer F., Johanni R.: A Concept for Manipulator Trajectory Planning. IEEE Journal of Robotics and Automation, vol. 3, nr 2, 1987, s. 115-123.
- [20] Rimon E., Koditschek D.E.: Exact Robot Navigation Using Artificial Potential Functions. IEEE Trans. on Robotics and Automation, vol. 8, nr 5, 1992, s. 501-518.
- [21] Rubinowicz W., Królikowski W.: Mechanika teoretyczna. PWN, Warszawa 1980.
- [22] Shiller Z.: On Singular Time-Optimal Control Along Specified Paths. IEEE Trans. on Robotics and Automation, vol. 10, nr 4, 1994, s. 561-566.
- [23] Shiller Z., Dubowsky S.: Robust Computation of Path Constrained Time Optimal Motions. Proc. of the IEEE International Conference on Robotics and Automation, 1990, s. 144-149.
- [24] Shiller Z., Lu H.H.: Computation of Path Constrained Time Optimal Motions with Dynamic Singularities. ASME Journal of Dynamic Systems, Measurement, and Control, vol. 114, nr 2, 1992, s. 34-40.
- [25] Singh S.K., Leu M.C.: Manipulator Motion Planning in the Presence of Obstacles and Dynamic Constraints. Int. Journal of Robotics Research, vol. 10, nr 2, 1991, s. 177-187.
- [26] Singh L., Wen J., Stephanou H.: Motion Planning and Dynamic Control of a Linked Manipulator Using Modified Magnetic Fields. Proc. of the IEEE International Conference on Robotics and Automation, 1997, s. 1142-1147.
- [27] Spong M.W., Vidyasagar M.: Robot Dynamics and Control. Wiley, Nowy Jork 1989.
- [28] Tchoń K.: A Normal Form Appraisal of the Null Space-Based Singular Path Tracking. Proc. of the IEEE IES First Workshop on Robot Motion and Control, 1999, s. 263-271.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPC6-0001-0078