Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 13, no. 3 | 15-25
Tytuł artykułu

Procedure of generating the individually matched bone scaffolds

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The pace of modern life forced continuous high readiness and proper condition of motion systems on human beings. The techniques used in medicine and orthopaedics enable treatment of even highly complicated injuries and pathological states. One of them involves the use of bone scaffolding – the technique being intensively developed, which seems to have a promising future. Based on a numerical modelling, it is possible to match that type of implant to the needs of individual patient, with consideration for both biomechanical factors (patient weight, bone size and its defects) and the applicable implantation techniques. Vast possibilities are offered by the application of the finite element method as a technique enabling verification of an implant with the individually matched geometry and material. The paper presents the procedure aimed at generating the bone scaffold structure that enables the stresses created in the contact places of implant with the surrounding bone tissue to be reduced. High stresses may lead to local damages to the tissue and, in extreme cases, to the destruction of a scaffold. The present procedure is based on the theory of genetic algorithms and, due to several models widely known in biomechanics, allows stresses in places of bone contact with implant to be significantly reduced.
Wydawca

Rocznik
Strony
15-25
Opis fizyczny
Bibliogr. 21 poz., il.
Twórcy
Bibliografia
  • [1] ZGIERSKA A., Wypadki przy pracy w 2007 r., Informacje i opracowania statystyczne - Departament Pracy i Warunków Życia, 2008.
  • [2] World Health Organization. International statistical classification of diseases and related health problems 10th revision, http://apps.who.int/classifications/apps/icd/icd10online/, 2007.
  • [3] VACCARO A.R., The role of the osteoconductive scaffold in synthetic bone graft, Orthopedics, May 2002, Vol. 25, No. 5, 571-578.
  • [4] BIAŁOZYK P., NIWINSKI P., FLADER A., Wybrane problemy leczenia braków całkowitych uzębienia szczęki implantoprotezami stałymi, Implantoprotetyka, 2008, Vol. IX, No. 3(32), 3-10.
  • [5] GOULET J.A., SENUNAS L.E., De SILVA G.L., GREENFIELD M.L., Autogenous iliac crest bone graft. Complications and functional assessment, Clin. Orthop. Relat. Res., 1997, Vol. 339, 76-81.
  • [6] BAUER T.W., MUSCHLER G.F., Bone graft materials. An overview of the basic science, Clin. Orthop. Relat. Res., 2000, Vol. 371, 10-27.
  • [7] JOSEPH J.R., WOODARD R., HILLDORE A.J., LAN S.K., PARK C.J., MORGAN J.A.C., EURELL A.W., CLARK S.G., WHEELER M.B., JAMISON R.D., JOHNSON A.J.W., The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity, Biomaterials, 2007, Vol. 28, 45-54.
  • [8] LEE C.H., SINGLA A., LEE Y., Biomedical applications of collagen, Int. J. Pharm., 2001, Vol. 221, 1-22.
  • [9] DOMINIAK M., GERBER-LESZCZYSZYN H., Rekonstrukcja podłoża protetycznego za pomocą plastyki wyrostka zębodołowego szczęki i żuchwy, Adv. Clin. Exp. Med., 2005, Vol. 14, No. 3, 593-601.
  • [10] PŁOMINSKI J., KWIATKOWSKI K., Przeszczepy kostne, Pol. Merk. Lek., 2006, Vol. XXI, No. 126, 507-510.
  • [11] CANCEDDA R., BIANCHI G., DERUBEIS A., QUARTO R., Cell therapy for bone disease: a reviev of current status, Stem Cells, 2003, Vol. 21, 610-619.
  • [12] KAIGLER D., KREBSBACH P.H., WANG Z., WEST E.R., HORGER K., MOONEY D.J., Transplanted endothelial cells enhance orthotopic bone regeneration, J. Dent. Res., 2006, Vol. 85, No. 7, 633-637.
  • [13] CRISTOFOLINI L., VICECONTI M., Mechanical validation of whole bone composite tibia models, Journal of Biomechanics, 2000, Vol. 33, 279-288.
  • [14] HURWITZ D.E., SUMNER D.R., ANDRIACCHI T.P., SUGAR D.A., Dynamic knee loads during gait predict proximal tibial bone distribution, Journal of Biomechanics, 1998, Vol. 27, 423-430.
  • [15] MAQUET P.G.J., Biomechanics of the Knee, Springer-Verlag, second edition, 1984.
  • [16] ŚCIGAŁA K., Badania modelowe charakterystyk odkształceniowych stawu kolanowego, praca doktorska, Zakład Inżynierii Biomedycznej i Mechaniki Eksperymentalnej, Politechnika Wrocławska, 2002.
  • [17] CARTER D.R., BEAUPRÉ G.S., Skeletal function and form, Cambridge University Press, 2001.
  • [18] MARTIN R.B., Porosity and specific surface of bone, Crit. Rev. Biomed. Eng., 1984, 10(3), 179-222.
  • [19] SIVANANDAM S.N., DEEPA S.N., Introduction to genetic algorithms, Springer, 2008.
  • [20] HUTMACHER D.W., Scaffolds in tissue engineering bone and cartilage, Biomaterials, 2000, Vol. 21, 2529-2543.
  • [21] HOLLISTER S.J., MADDOX R.D., TABOAS J.M., Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints, Biomaterials, 2002, Vol. 23, 4095-4103.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPBA-0012-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.