Czasopismo
2012
|
Vol. 19, no. 2
|
173-190
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This work deals with the construction of a mixed and extensible domain decomposition method for incompressible flows. In the scheme proposed here, the solution is sought at the intersection of two spaces, one containing the solution of the Navier–Stokes equations considered separately in each subdomain, and theother one containing the solutions of the compatibility equations on the interfaces. A solution verifying all the equations of the two spaces is achieved iteratively. One di?culty is that the interface problem is large and dense. In order to reduce its cost while maintaining the extensibility of the method, we defined an interface macroproblem in terms of a few interface macro unknowns. The best option takes advantage of the incompressibility condition to prescribe an interface macroproblem which propagates the information to the whole domain by making use of only two unknowns per interface. Several examples are used to illustrate the main properties of the method.
Rocznik
Tom
Strony
173-190
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
- LMT-Cachan (ENS Cachan/CNRS/UPMC/PRES UniverSud Paris) 61 av. du Pr´esident Wilson, F-94230 Cachan, France, e-mail: vergnault@lmm.jussieu.fr
Bibliografia
- [1] S. Behara, S. Mittal. Parallel finite element computation of incompressible flows. Parallel Comput., 35: 195–212, 2009.
- [2] Chacón Rebollo, Tom´as and Chacón Vera, Eliseo. Study of a non-overlapping domain decomposition method: Steady Navier–Stokes equations. Applied Numerical Mathematics, 55(9): 100–124, 2005.
- [3] V. Dolean and S. Lanteri. Parallel multigrid methods for the calculation of unsteady flows on unstructured grids: algorithmic aspects and parallel performances on clusters of PCS. Parallel Computing, 30: 503–525, 2004.
- [4] J. Donea, A. Huerta. Finite Element Methods for Flow Problems. ed. Wiley, 2003.
- [5] C. Farhat, F.-X. Roux. A method of finite element tearing and interconnecting and its parallel solution algorithm. IJNME, 32: 1205–1227, 1991.
- [6] R. Glowinski, T.W. Pan, J. Periaux. Fictitious domain/domain decomposition methods for partial differentialequations. Domain-based parallelism and problem decomposition method in computational science and engineering, pp. 177–192, Philadelphia, 1995.
- [7] Volker Gravemeier, Wolfgang A.Wall, Ekkehard Ramm. A three-level finite element method for the instationary incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 193(15–16): 1323–1366, 2004.
- [8] P.-A. Guidault, O. Allix, L. Champaney, C. Cornuault. A multiscale extended finite element method for crack propagation. Computer Methods in Applied Mechanics and Engineering, 197(5): 381–399, 2008.
- [9] T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J-B. Quincy. The variational multiscale method: a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 166: 3–24, 1998.
- [10] P. Ladev`eze. Multiscale modelling and computational strategies for composites. International Journal for Numerical Methods in Engineering, 60(1): 233–253, 2004.
- [11] P. Ladev`eze, D. Dureissex. A new micro-macro computational strategy for structural analysis. Compte-rendu de l’acad´emie des sciences, 337 IIB: 1327–1344, 1999.
- [12] J. Li. Dual primal FETI methods for stationary stokes and Navier–Stokes equations, 2002.
- [13] J.Mandel. Balancing domain decomposition. Communications in Applied Numerical Methods, 9: 233–241, 1993.
- [14] C.A. Rivera, M. Heniche, R. Glowinski, P.A. Tanguy. Parallel finite element simulations of incompressible viscous fluid flow by domain decomposition with Lagrange multipliers. J. Comput. Phys., 229: 5123–5143, 2010.
- [15] M. Sch¨afer, S. Turek. Benchmark computations of laminar flow around a cylinder. Flow Simulation with High Performance Computation II, 52: 547–566, 1996.
- [16] Y.Q. Shang, Y.N. He.Parallel finite element algorithms based on full domain partition for stationary Stokes equations. Appl. Math. Mech.-Engl. Ed., 31(5): 643–650, 2010.
- [17] Y.Q. Shang, Y.N. He.Parallel iterative finite element algorithms based on full domain partition for the stationary Navier–Stokes equations. Appl. Numer. Math., 60(7): 719–737, 2010.
- [18] T.E. Tezduyar, S. Mittal, S.E. Ray, R. Shih. Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Computer Methods in Applied Mechanics and Engineering, 95(2): 221–242, 1992.
- [19] A. Toselli. FETI domain decomposition methods for scalar advection-diffusion problems. Computer Methods in Applied Mechanics and Engineering, 190(43–44): 5759–5776, 2001.
- [20] U. Trottenberg, C.W. Oosterlee, A. Schuller. Multigrid. Academic Press, 2001.
- [21] B. Vereecke, H. Bavestrello, D. Dureisseix. An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems. Comput. Methods Appl. Mech. Eng., 192: 3409–3429, 2003.
- [22] E. Vergnault, O. Allix, S. Maison-le-Po¨ec.Fluid-structure interaction with a multiscale domain decomposition method. European Journal of Computational Mechanics, 19(1-2-3): 267–280, 2010.
- [23] O.C. Zienkiewicz, R.L. Taylor, P. Nithiarasu. The Finite Element Methods for Fluid Dynamics. ed. Butterworth-Heinemann, 2005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0070-0019