Czasopismo
2006
|
Vol. 13, No. 1
|
109-124
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents certain results of the analysis of elastic wave propagation in one-dimensional (1-D) and two-dimensional (2-D) elements of structures with damage. The problem of the elastic wave propagation has been solved by the use of the Spectral Element Method (SEM). In this approach elements of structures are modelled by a number of spectral finite elements with nodes defined at appropriate Gauss-Lobatto-Legendre points. As approximation polynomials high order orthogonal Lagrange polynomials are used. In order to calculate the elements characteristic stiffness and mass matrices the Gauss-Lobatto quadrature has been applied. In the current analysis damage in the form of crack has been considered. It has been assumed that the damage can be of an arbitrary length, depth, and location and can be simulated as a line spring of varying stiffness. Numerical calculations illustrating the phenomena of the elastic wave propagation in isotropic media have been carried out for the case of an aluminium rod and beam as well as a flat aluminium panel and plate.
Rocznik
Tom
Strony
109-124
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
autor
autor
autor
- Faculty of Navigation, Gdynia Maritime University, Poland
Bibliografia
- [l] CA. Brebbia, J.C.F. Tells, L.C. Wróbel. Boundary Elements Techniques. Springer, Berlin, 1984.
- [2] Y. Cho, J.L. Rose. A boundary element solution for mode conversion study of the edge reflection of Lamb waves. Journal of the Acoustical Society of America, 99: 2079-2109, 1996.
- [3] P.P. Delsanto, R.B. Mignogna. A spring model for the simulation of the ultrasonic pulses through imperfect contact interfaces. Journal of Acoustical Society of America, 104: 1-8, 1998.
- [4] P.P. Delsanto, T. Whitecomb, H.H. Chaskelis, R.B. Mignogna. Connection machine simulation of ultrasonic wave propagation in materials. I: the one-dimensional case. Wave Motion, 16: 65-80, 1992.
- [5] P.P. Delsanto, T. Whitecomb, H.H. Chaskelis, R.B. Mignogna, R.B. Kline. Connection machine simulation of ultrasonic wave propagation in materials. II: the two-dimensional case. Wave Motion, 20: 295-314, 1994.
- [6] P.P. Delsanto, R.S. Schechter, R.B. Mignogna. Connection machine simulation of ultrasonic wave propagation in materials. III: the three-dimensional case. Wave Motion, 26: 329-339, 1997.
- [7] J.F. Doyle. Wave Propagation in Structures. Springer-Verlag, New York, 1997.
- [8] W. Dauksher, A.F. Emery. Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements. Finite Elements in Analysis and Design, 26: 115-128, 1997.
- [9] B. Hackbush. Multi-grid Methods and Applications. Springer-Verlag, Berlin, 1985.
- [10] I. Harari, E. Turkel. Accurate finite difference methods for time-harmonic wave propagation. Journal of Computational Physics, 119: 252-270, 1995.
- [11] H. Igawa, K. Komatsu, I. Yamaguchi, T. Kasai. Wave propagation analysis of frame structures using the spectral element method. Journal of Sound and Vibration, 277: 1071-1081, 2004.
- [12] M.H. Kim, W.C. Koo, S.Y. Hong. Wave interactions with 2D structures on/inside porous seabed by a two-domain boundary element method. Applied Ocean Research, 22: 255-266, 2000.
- [13] M. Kleiber. Finite Element Method in Non-linear Continuum Mechanics (in Polish). PWN, Warsaw, 1985.
- [14] D. Komatitsch, J.P. Violotte, R. Vai, J.M. Castillo-Covarrubias, F.J. Sanchez-Sesma. The spectral element method for elastic wave equation - Application to 2-D and 3-D seismic problems. International Journal for Numerical Methods in Engineering, 45: 1139-1164, 1999.
- [15] D. Komatitsch, C. Barnes, J. Tromp. Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics, 4: 1251-1260, 2000.
- [16] D. Komatitsch, R. Martin, J. Tromp, M.A. Taylor, B.A. Wingate. Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles. Journal of Computational Acoustics, 9: 703-718, 2001.
- [17] http://mathworld.wolfram.com/LegendrePolynomial.html.
- [18] F. Moser, L.J. Jacobs, J. Qu. Modeling elastic wave propagation in waveguides with the finite element method. NDT&E International, 32: 225-234, 1999.
- [19] J. Orkisz. Finite Difference Method (Part III), Handbook of Computational Solid Mechanics. Springer-Verlag, Berlin, 336-432, 1998.
- [20] A.T. Patera. A spectral element method for fluid dynamics: Laminar flow in a chanell expansion, Journal of Computational Physics, 54: 468-488, 1984.
- [21] M. Palacz, M. Krawczuk, W. Ostachowicz. The spectral finite element model for analysis of flexural-shear coupled wave propagation. Part 1: Laminated multilayer composite. Composite Structures, 68: 37-44, 2005.
- [22] S.Z. Peng. Flexural wave propagation and dynamic stress concentration in a multi-stepped plate using acoustical wave propagator method. International Journal of Vehicle Noise and Vibration, 1: 169-182, 2004.
- [23] E. Perrey-Debain, J. Trevelyan, P. Bettess. Plane wave interpolation in direct collocation boundary elementmethod for radiation and wave scattering: numerical aspects and applications. Journal of Sound and Vibration, 261: 839-858, 2003.
- [24] C. Pozrikidis. Introduction to Finite and Spectral Element Methods using MATLAB, Taylor and Francis Group, LCC, San Diego, 2005.
- [25] J.N. Reddy. An Introduction to the Finite Element Method. McGraw-Hill, Inc., Singapore, 1993.
- [26] W.J. Staszewski. Ultrasonic/guided waves for structural health monitoring. Key Engineering Materials, Trans. Tech. Publications, 293-294: 49-60, 2005.
- [27] H. Yim, Y. Sohn. Numerical simulation and visualization of elastic waves using mass-spring lattice model. IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency Control, 47: 549-558, 2000.
- [28] X. Yu. Finite difference methods for the reduced water wave equation. Computer Methods in Applied Mechanics and Engineering Volume, 154: 265-280, 1998.
- [29] O.C. Zienkiewicz. The Finite Element Method. McGraw-Hill, London, 1989.
- [30] F.I. Zyserman, P.M. Gauzellino. Dispersion analysis of a nonconforming finite element method for the three-dimensional scalar and elastic wave equations. Finite Elements in Analysis and Design Volume, 41: 1309-1326, 2005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0017-0006