Warianty tytułu
Języki publikacji
Abstrakty
The paper demonstrates the potential of Discrete Wavelet Transform (DWT) in damage detection. Efficiency of the method is demonstrated by the way of examples. In this study the numerically simulated static and dynamic experiments were used. One dimensional DWT was used to signal processing. Measurement errors were accounted for by introduction of white noise.
Rocznik
Tom
Strony
21-38
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
autor
autor
- Institute of Structural Engineering, Poznań University of Technology, ul. Piotrowo 5, 60-695 Poznań, Poland
Bibliografia
- [1] R.D. Adams, P. Cawley, C.J. Pye, B.J. Stone, A vibration technique for non-destructive assessing the integrity of structures. J. ofMech. Engr. Sci., 20: 93-100, 1978.
- [2] T. Burczyński, P. Orantek, Hybrid evolutionary algorithms aided by sensitivity information in identification and structural optimization. Proc. 2nd ECCM, Kraków, 2001.
- [3] P. Cawley, R.D. Adams, The location of defects in structure from measurements of natural freąuencies. J. Strain Anal, 14: 49-57, 1979.
- [4] CK. Chui, An introduction to Wavelets. Academic Press. Inc., San Diego, 1992.
- [5] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis. IEEE Trans, on Information Theory, 36: 961-1005, 1990.
- [6] I. Daubechies, Ten lectures on wavelets. PA: SI AM, Philadelphia, 1992.
- [7] K. Dems, Z. Mróz, Identification of damage in beam and plate structures using parameter dependent frequency changes. Engineering Computations, 18(1/2): 96-120, 2001.
- [8] S.W. Doebling, CR. Farrar, M.B. Prime, D.W. Shevitz, Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review. Report LA-13070-MS, UC-900, Los Alamos National Laboratory, New Mexico 87545, USA, May, 1996.
- [9] E. Douka, S. Loutridis, A. Trochidis, Crack identification in beams using wavelet analysis. International Journal of Solid and Structures, 40: 3557-3569, 2003.
- [10] H. Furuta, J. He, E. Watanabe, A fuzzy expert system for damage assessment using genetic algorithms and neural networks. Microcomputers in Civil Eng., 11: 37-45, 1996.
- [11] A. Garstecki, A. Knitter-Piątkowska, Z. Pozorski, K. Ziopaja, Damage detection using parameter dependent dynamic experiments and wavelet transformation. J. of Civil Eng. and Management, Vilnius Gediminas Technical University, Lithuania, 10(3): 191-197, September 2004.
- [12] A. Gentile, A. Messina, On the continuous wavelet transform applied to discrete vibrational data for detecting open cracks in damaged beams. International Journal of Solids and Structures, 40: 295-315, 2003.
- [13] W. Glabisz, Identification of linear and non-linear systems with Walsh wavelet packets. Arch. Civ. Mech. Eng., 1: 47-62, 2001.
- [14] W. Glabisz, The use of Walsh-wavelet packets linear boundary value problems. Comput. Struct., 82: 131-141, 2004.
- [15] J.-C Hong, Y.Y. Kim, H.C. Lee, Y.W. Lee, Damage detection using the Lipschitz exponent estimated by the wavelet transform: applications to vibration modes of a beam. International Journal of Solids and Structures, 39: 1803-1816, 2002.
- [16] A. Knitter-Piątkowska, A. Garstecki, Wavelet transformation in damage identification by dynamie tests. Proc. 75th Annual Scientific Conference - GAMM, Dresden, Germany, March 21-27, 2004.
- [17] A. Knitter-Piątkowska, Z. Pozorski, K. Ziopaja, A. Garstecki, Damage detection using dynamie approach and sensitivity analysis. Proc. CMM-2003, Gliwice/Wisła, Poland, June 3-6, 2003.
- [18] M. Krawczuk, Application of spectral beam finite element with a crack and iterative search technique for damage detection. Finite Elements in Analysis and Design, 38: 537-548, 2002.
- [19] J. Lee, R.T. Haftka, O.H.Jr Griffin, L.T. Watson, M.D. Sensmeier, Detecting delaminations in a composite beam using anti-optimization. Struct. Optim., 8: 93-100, 1994.
- [20] S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattem Anal. and Machinę Inteli, 11: 674-693, 1989.
- [21] Z. Mróz, A. Garstecki, Optimal loading conditions in design and identification of structures. Part 1: Discrete formulation. Int. J. Struct. and Multidisciplinary Optim., 29: 11-18, 2005.
- [22] Z. Mróz, A. Garstecki, Optimal loading in identification and design of structures. Proc. 2nd WCSMO, (W. Gutkowski, Z. Mróz, Eds.), Zakopane, IFTR, 279-284, 1997.
- [23] D.E. Newland, Random vibrations, spectral a.nd wavelet analysis. 3rd ed., Longman, Harlow and John Wiley, New York 1993.
- [24] M. Palacz, M. Krawczuk, W. Ostachowicz, The spectral finite element model for analysis of flexural-shear coupled wave propagation. Part 1: Laminated multilayer composite. Composite Structres, 68: 37-44, 2005.
- [25] Q. Wang, X. Deng, Damage detection with spatial wavelets. J. Solid and Struct., 36: 3443-3468, 1999.
- [26] W. J. Wang, P.D. McFadden, Application of wavelets to gearbox vibration signals for fault detection. Journal of Sound and Vibration, 192: 927-939, 1996.
- [27] Z. Waszczyszyn, L. Ziemiański, Neural networks in mechanics of structures and materials - new results and prospects of applications. Computers and Structures, 79(22-25): 2261-2276, September, 2001.
- [28] K. Wilde, M. Rucka, Damage detection in rectangular plates by continuous two-dimensional wavelet transformation. Eurodyn 2005 Conference, Paris, France, September 4-7, 2005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0017-0002