Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | Vol. 51, iss.4 | 363-379
Tytuł artykułu

Numerical analysis of the damage evolution in a composite pipe joint under cyclic static axial tension

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
axial tension with constant amplitude. The approach uses the simplified average shear stress criterion for defect propagation in the adhesive layer and applies the continuum damage mechanics concept to continuum crack-like damage representation in terms of the finite element stiffness. Numerical studies are performed using the commercial Finite Element Method displacement-based ANSYS program, with its special purpose finite element containing birth and death option. Computed damage evolution per a loading cycle leads further to estimation of the cumulative damage growth in terms of a crack-like type for different load amplitude levels. Finally, a numerically determined relation between the applied load amplitude and the load cycles number to failure is derived.
Wydawca

Rocznik
Strony
363-379
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • Departament of Structure and Mechanics, Institute of Polymer Research Dresden e.V. Hohe Strae 6, 01069, Dresden, Germany, figiel@ipfdd.de
Bibliografia
  • 1. E.M. KNOX, M.J. COWLING, S.A. HASHIM, Fatigue performance of adhesively bonded connections in GRE pipes, International Journal of Fatigue, 22, 513–519, 2000.
  • 2. C. YANG, Design and analysis of composite pipe joints under tensile loading, Journal of Composite Materials, 34, 4, 33–349, 2000.
  • 3. K. J. BATHE, Finite element procedures, Englewood Cliffs, Prentice Hall, 1996.
  • 4. L.M. KACHANOV, Introduction to damage mechanics, Kluwer Academic Publishers, 1986.
  • 5. ANSYS, v. 5.5, Canonsburg, 1999.
  • 6. J. WHITNEY, R.J. NUISMER, Stress fracture criteria for laminated composites containing stress concentrations, Journal Composite Materials, 8, 25-3-265, 1974.
  • 7. M. KAMIŃSKI, On probabilistic fatigue models for composite materials, International Journal of Fatigue, 24, 477–495, 2002.
  • 8. V.V. BOLOTIN, A unified approach to damage accumulation and fatigue crack growth, Engineering Fracture Mechanics, 22, 3, 38–398, 1985.
  • 9. C. ZWEBEN, H.T. HAHN, T.-W. CHOU [Eds.], Delaware composites design encyclopaedia, 1, 47–70, Lancaster, Techonomic Publishing Co., 1989.
  • 10. A.J. KINLOCH, Adhesion and adhesives: science and technology, Chapman & Hill, 1987.
  • 11. S.A. GRIFFIN, S.S. PANG, C. YANG, Strength model of adhesive bonded composite pipe joints under tension, Polymer Engineering and Science, 31, 7, 533–538, 1991.
  • 12. J.R. VINSON, R.L. SIERAKOWSKI, The behaviour of structures composed of composite materials, Martinus Nijhoff Publishers, 1986.
  • 13. W.H. CHEN and S.S. LEE, Numerical and experiment failure analysis of composite laminates with bolted joints under bending loads, Journal of Composite Materials, 29, 1, 15–36, 1995.
  • 14. R.H.J. PEERLINGS, Enhanced damage modelling for fracture and fatigue, PhD Thesis, TU Eindhoven, 1999.
  • 15. P.M. FRANK, Introduction to system sensitivity theory, Academic Press, 1978.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0008-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.