Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | Vol. 9, No. 2 | 191-203
Tytuł artykułu

Structural optimization method based on cellular automata simulation

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the topology and the shape optimization scheme of the continuum structures using the cellular automata simulation. The design domain is divided into small square cells. By considering the cells as the elements, the stress analysis of the structure is carried out by finite element method. Then, the design variables are updated according to the local rule and the stress distribution. The rule is defined as the simple relationship between a cell whose design variable is updated and its neighborhood cells. In this paper, we will discuss the formulation to analytically derive the rules from the optimization problems. The special constraint condition named as ``CA-constraint condition'' is introduced first and then, the global optimization problem for the whole structure is divided into the local problem for some neighboring cells. The derived rules are applied to the same numerical example in order to discuss the theoretical validity of the formulation and the feature of the rules.
Wydawca

Rocznik
Strony
191-203
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
  • Department of Mechano-Informatics and Sciences, Nagoya University, Nagoya, 464-8603 Japan
autor
  • School of Informatics and Sciences, Nagoya University, Nagoya, 464-8601 Japan
Bibliografia
  • [1] K.-J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, 1982.
  • [2] E.R. BerleKamp, J.H. Conway, R.K. Guy. Winning Ways for Your Mathematical Plays, 1st edition. Academic Press Ltd., 1982.
  • [3] M. Garzon. Models of Massive Parallelism, 1st edition. Springer-Verlag, 1995.
  • [4] R. Gaylord, K. Nishidate. Modeling Nature: Cellular Automata Simulations with Mathematica, 1st edition. Springer-Verlag, 1996.
  • [5] N. Ilion. Optimal design methods based on biological information systems (in Japanese). Journal of Japan Society for Technology of Plasticity, 35(4): 316, 1994.
  • [6] N. Inou, N. Shimotai, T. Uesugi. A cellular automaton generating topological structures. In: A. McDonach, P.T. Gardiner, R.S. McEwen, B. Culshaw, eds., Proceedings of Second European Conference on Smart Structures and Materials, 2361, 1994.
  • [7] N. Inou, T. Uesugi, A. Iwasaki, S. Ujihashi. Self-organization of mechanical structure by cellular automata. In: P. Tong, T.Y. Zhang, J.K. Kim, eds., Fracture and Strength of Solids Pt 2; Behavior of Materials and Structures (Proc. 3-rd International Conference, Hong Kong, 1997), pp. 1115-1120, 1998.
  • [8]R. Ishida, A. Shiragami. Topological design of two-dimensional structure by cellular automaton (in Japanese). Transactions of JSME, A64(628): 2895-2900, 1998.
  • [9] H. Kim, G.P. Steven, Q.M. Querin, Y.M. Xie. Development of an intelligent cavity creation (ICC) algorithm for evolutionary structural optimisation. In: G.P. Steven, O.M. Querin, H. Guan, Y.M. Xie, eds., Structural Optimization (Proc. 1st Australasian Conf. Struct. Opt., Sydney, Australia, 1998), pp. 241-250, 1998.
  • [10] E. Kita, T. Toyoda. Structural optimization based on CA. In: A.J. Kassab S. Hernandez, C.A. Brebbia, eds., Computer Aided Optimum Design of Structures (Proc. OPTI99, Orlando, FL, 1999), pp. 185-194, 1999.
  • [11] E. Kita, T. Toyoda. Structural optimization using local rules. In: Proc. 3rd WCSMO, NY, 1999, 30-SMO-3, 1999.
  • [12] E. Kita, T. Toyoda. Structural design using cellular automata. Struct. Opt., 19: 64-73, 2000.
  • [13] S. Kundu, J. Oda, T. Koishi. A self-organizing approach to optimization of structural plates using cellular automata. In: W. Gutkowski, Z. Mróz, eds., Structural and Multidisciplinary Optimization (Proc. 2nd World Congress of Structural and Multidisciplinary Optimization, Zakopane, Poland, 1997, pp. 173-180. Institute of Fundamental Technological Research, Polish Academy of Sciences, 1997.
  • [14] S. Kundu, J. Oda, T. Koishi. Design computation of discrete systems using evolutionary learning. In: W. Gutkowski, Z. Mróz, eds., Structural and Multidisciplinary Optimization (Proc. 2nd World Congress of Structural and Multidisciplinary Optimization, Zakopane, Poland, 1997, pp. 173-180. Institute of Fundamental Technological Research, Polish Academy of Sciences, 1997.
  • [15] S. Levy. Artificial Life, The Quest for a New Creation, 1st edition. Penguin Books, 1992.
  • [16] J. von Neumann. The General and Logical Theory of Automata - Cerebral Mechanisms in Behavior. John Wiley and Sons, 1951.
  • [17] J. von Neumann. Theory of Self-Reproducting Automata. Illinois Univ. Press, 1966.
  • [18] W.M. Payten. A fractal interpretation for optimal structures. In: G.P. Steven, O.M. Querin, H.Guan, Y.M. Xie, eds., Structural Optimization (Proc. 1st Australasian Conf. Struct. Opt., Sydney, Australia, 1998), pp. 533-540, 1998.
  • [19] W.M. Payten, B. Ben-Nissan, D.J. Mercer. Optimal topology design using a global self-organisational approach. International Journal of Solids and Structures, 35(3-4): 219-237, 1998.
  • [20] W. M. Payten, M. Law. Topology and reinforcement optimisation of fiat plate and curved thin shell structures using adaptive self-organising density approach. In: G.P. Steven, O.M. Querin, H. Guan, Y.M. Xie, eds., Structural Optimization (Proc. 1st Australasian Conf. Struct. Opt., Sydney, Australia, 1998), pp. 165-172, 1998.
  • [21] J. Sakamoto, J. Oda. Simulation of adaptive bone remodeling by using cellular automata. In: S. Hernandez, M. El-Sayed, C.A. Brebbia, eds., Structural Optimization (Proc. 4th International Conference on Computer Aided Optimum Design of Structures, Miami, FL, 1995), pp. 93-100. Comp. Mech. Pub., 1995.
  • [22] M.M. Waldrop. Complexity, The Emerging Sciences at the Edge of Order and Chaos, 1st edition. Simon and Schuster, 1992.
  • [23] S. Wolfram. Cellular Automata and Complexity, 1st edition. Addison-Wesley, 1994.
  • [24] Y.M. Xie, G.P. Steven. A simple evolutionary procedure for structural optimization. Computers and Structures, 49: 885-896, 1993.
  • [25] Y.M. Xie, G.P. Steven. Optimal design of multiple load case structures using an evolutionary procedure. Eng. Comput., 11: 295-302, 1994.
  • [26] Y.M. Xie, G.P. Steven. A simple approach to structural frequency optimization. Computers and Structures, 53: 1487-1491, 1994.
  • [27] Y.M. Xie, G.P. Steven. Evolutionary structural optimization for dynamic problems. Computers and Structures, 58(6): 1067-1073, 1996.
  • [28] X.Y. Yang, Y.M. Xie, G.P. Steven, Q.M. Querin. Bi-directional evolutionary method for frequency optimization. In: G.P. Steven, O.M. Querin, H. Guan, Y.M. Xie, eds., Structural Optimization (Proc. 1st Australasian Conf. Struct. Opt., Sydney, Australia, 1998), pp. 231-237, 1998.
  • [29] C. Zhao, G.P. Steven, Y.M. Xie. Effect of initial nondesign domain on optimal topologies of structures during natural frequency optimization. Computers and Structures, 62(1): 119-131, 1997.
  • [30] C. Zhao, G.P. Steven, Y.M. Xie. A generalized evolutionary method for natural frequency optimization of membrane vibration probvlems in finite element analysis. Computers and Structures, 66(2-3): 353-364, 1998.
  • [31] O.C. Zienkiewicz, R.L. Taylor. The Finite Element Method, 4th edition. McGraw-Hill Ltd., 1991.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0006-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.