Czasopismo
2007
|
Vol. 14, No. 3
|
405-429
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
A finite element implementation of the unified elasto-viscoplastic theory of Bodner–Partom for non-linear analysis is investigated in detail. Description of the Bodner–Partom constitutive equations is presented. Proposed UVSCPL procedure has been applied into MSC.Marc system and can be introduced into wide range of different finite elements (e.g. shell, solid, truss). For the validation of the proposed FE procedure the numerical simulations are presented. Additionally, the first part of the paper gives brief characterization of the engineering applications of the Bodner–Partom constitutive equations used for the different modelling of materials.
Rocznik
Tom
Strony
405-429
Opis fizyczny
Bibliogr. 78 poz., tab., wykr.
Twórcy
autor
- Gdańsk University of Technology, Department of Structural Mechanics and Bridge Structures, Narutowicza 11/12, 80-952 Gdańsk
Bibliografia
- [1] A. Ambroziak. Chaboche model - development and FE application. Zeszyty Naukowe Politechniki Śląskiej, 104: 35—42, 2005.
- [2] A. Ambroziak. Numerical modelling of elasto-viscoplastic Chaboche constitutive equations using MSC.Marc. Task Quarterly, 9(2): 167-178, 2005.
- [3] H. Anderson. An implicit formulation of the Bodner-Partom constitutive equations. Computer and Structures, 81: 1405-1414, 2003.
- [4] H. Andersson, C. Persson, T. Hansson. Crack growth in IN718 at high temperature. International Journal of Fatigue, 23: 817-827, 2001.
- [5] V.K. Arya. Efficient and accurate explicit integration algorithms with application to viscoplastic models. International Journal for Numerical Methods in Engineering, 39(2): 261-279, 1996.
- [6] M. Aubertin, D.E. Gill, B. Landanyi. A unified viscoplastic model for the inelastic flow of alkali halides. Mechanics of Materials, 11: 63-82, 1991.
- [7] R.C. Barta, L. Chen. Effect of viscoplastic relations on the instability strain, shear band initiation strain, the strain corresponding to the minimum shear band spacing, and the band width in a thermoviscoplastic material. International Journal of Plasticity, 17: 1465-1489, 2001.
- [8] R.C. Barta, N.A. Jaber. Failure mode transition speeds in an impact loaded prenotched plate with four thermoviscoplastic relations. International Journal of Fracture, 110(1): 47-71, 2001.
- [9] R.C. Batra, N.A. Jaber, M.E. Malsbury. Analysis of failure model in an impact loaded thermoviscoplastic prenotched plate. International Journal of Plasticity, 19: 139-196, 2003.
- [10] S.R. Bodner, K.S. Chan. Modeling of continuum damage for application in elastic-viscoplastic constitutive equations. Engineering Fracture Mechanics, 25: 705-712, 1986.
- [11] S.R. Bodner, Y. Partom. Constitutive equations for elastic-viscoplastic strain-hardening materials. Journal of Applied Mechanics, ASME, 42: 385-389, 1975.
- [12] S.R. Bodner. Review of a unified elastic-viscoplastic theory. In: K. Miller, ed., Unified Constitutive Equations for Creep and Plasticity, pp. 273-301. Elsevier, 1987.
- [13] S.R. Bodner. Unified Plasticity for Engineering Applications. Kluwer Academic/Plenum Publishers, New York, 2002.
- [14] J.L. Chaboche. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity, 5: 247-302, 1989.
- [15] K.S. Chan, S.R. Bodner, U.S. Lindholm. Phenomenological modelling of hardening and thermal recovery in metals. Journal of Engineering Material and Technology, 110: 1-8, 1988.
- [16] K. Chelminski. On the model of Bodner-Partom with nonhomogeneus boundary data. Mathematische Nachrichten, 214(1): 5-23, 2000.
- [17] R.W. Clough, J. Penzien. Dynamics of Structures. McGraw-Hill, Inc., Intl. Edition, 1993.
- [18] J. Eftis, Abdel M.S. Kader, D.I. Jones. Comparisons between the modified Chaboche and Bodner-Partom viscoplastic constitutive theories at high temperature. International Journal of Plasticity, 6: 1-27, 1989.
- [19] I.I. Esat, H. Bahai, F.K. Shati. Finite element modelling of anisotropic elastic-viscoplastic behaviour of metals. Finite Elements in Analysis and Design, 32: 279-287, 1999.
- [20] M.A. Foringer, D.D. Robertson, S. Mall. A micromechanics-based approach to fatigue life modeling of titanium-matrix composites. Composites Part B, 28B: 507-521, 1997.
- [21] G.J. Frank, R.A. Brockman. A viscoelastic-viscoplastic constitutive model for glassy polymers. International Journal of Solid and Structures, 38: 5149-5164, 2001.
- [22] A.D. Freed, M.J. Virrilli. A viscoplastic theory applied to copper. Proceedings of the MECAMAT, Besangon,Vol. I, pp. 27-39, 1988.
- [23] A.D. Freed, K.P. Walker. Refinements in viscoplastic model. In: D. Hui, T.J. Kozik, eds., Visco-Plastic Behaviour of New Materials. The Winter Annual Meeting of the ASME, San Francisco, 1989, pp. 10-15.
- [24] P. Gwizda. On singular limits to Bodner-Partom model. Mathematical Methods in the Applied Science, 24(3): 159-178, 2001.
- [25] H.-P. Hackenberg. Large deformation finite element analysis with inelastic constitutive models including damage. Computational Mechanics, 16(5): 315-327, 1995.
- [26] T. Hart, S. Schwan, J. Lehn, F.G. Kollmann. Identification of material parameters for inelastic constitutive models: statical analysis and design of experiments. International Journal of Plasticity, 20: 1403-1440, 2004.
- [27] D.R. Hayhurst. Creep rapture under multi-axial state of stress. Journal of Mechanical Physical Solids, 20: 381-390, 1972.
- [28] L. Jiang, H. Wang, P.K. Liaw, C.R. Brooks, D.L. Klarstrom. Temperature evolution during low-cycle fatigue of ULTIMET alloy: experimental and modeling. Mechanics of Materials, 36: 73-84, 2004.
- [29] G.R. Johnson, W.H. Cook. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. 7th International Symposium on Ballistics, The Hague, pp. 541-547, 1983.
- [30] A.S. Khan, S. Huang. Experimental and theoretical study of mechanical behaviour of 1100 aluminium in the strain rate range 10_5-104s_1. International Journal of Plasticity, 8: 397-424, 1992.
- [31] J. Klepaczko. The modified split Hopkinson pressure bar (in Polish). Mechanika Teoretyczna i Stosowana, 4(9): 479-497, 1971.
- [32] P. Kłosowski. Non-linear Numerical Analysis and Experiments on Vibrations of Elasto-Viscoplastic Plates and Shells (in Polish). Politechnika Gdanska, Gdansk 1999.
- [33] P. Kłosowski, D. Weichert, K. Woznica. Dynamic of elasto-viscoplastic plates and shells. Archives of Applied Mechanics, 65(5): 326-345, 1995.
- [34] P. Kłosowski, K. Woznica. Comparative analysis of dynamic behaviour of an elasto-viscoplastic truss element. Machine Dynamics Problems, 24(3): 33-53, 2000.
- [35] P. Kłosowski, K. Woznica. Numerical treatment of elasto viscoplastic shells in the range of moderate and large rotations. Computational Mechanics, 34: 194-212, 2004.
- [36] P. Kłosowski, K. Woznica, D. Weichert. Comparison of numerical modelling and experiments for the dynamic response of circular elasto-viscoplastic plates. European Journal of Mechanics A/Solids, 19: 343-359, 2000.
- [37] P. Kłosowski, A. Zagubien, K. Woznica. Investigation on rheological properties of technical fabric Panama. Archives of Applied Mechanics, 73(9-10): 661-681, 2004.
- [38] F.A. Kolkaillah, A.J. McPhate. Numerical representation of Bodner viscoplastic constitutive model. Journal of Engineering Mechanics, ASCE, 10: 195-223, 1989.
- [39] M.A. Korhonen, S.P. Hannjula, C.Y. Li. State variable theories based on Hart's formulation. In: K. Miller, ed., Unified Constitutive Equations for Creep and Plasticity, pp. 89-138. Elsevier, 1987.
- [40] E. Krempl, J.J. McMahon, D. Yao. Viscoplasticity based on overstress with a differential growth law for the equilibrium stress. Mechanics of Materials, 5: 35-48, 1984.
- [41] R.D. Krieg, J.C. Swearengen, W.B. Jones. A physically based internal variable model for rate dependent plasticity. In: K. Miller, ed., Unified Constitutive Equations for Creep and Plasticity, pp. 245-271. Elsevier, 1987.
- [42] J.L. Kroupa, M. Bartsch. Influence of viscoplasticity on the residual stress and strength of titanium matrix composite. Composites Part B, 29B: 633-642, 1998.
- [43] T. Lehmann. General Frame for Definition of Constitutive Laws for Large Non-Isothermic Elastic-Plastic and Elastic-Viscoplastic Deformations. Courses and Lectures, Vol. 281, Springer, Wien/New York, 1984.
- [44] A. Leonov. Nonequilibrum thermodynamics and rheology of viscoelastic polymer media. Rheol. Acta, 15: 85-98, 1976.
- [45] R. Liang, A.S. Khan. An critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. International Journal of Plasticity, 15: 963-980, 1999.
- [46] C.J. Lissenden, C.T. Herakovich. Numerical modelling of damage development and viscoplasticity in metal matrix composites. Computer Methods in Applied Mechanics and Engineering, 126: 289-303, 1995.
- [47] R. Mahnken, E. Stein. Parameter identification for viscoplastic models based on analytical derivation of a least-squares functional and stability investigations. International Journal of Plasticity, 12(4): 451-479, 1996.
- [48] A. Miller. An inelastic constitutive model for monotonic, cyclic and creep deformation (Part I and II). Journal of Engineering Material and Technologies, ASME, 98: 97-105 and 106-113, 1976.
- [49] A.K. Miller, ed. Unified Constitutive Equations for Creep and Plasticity. Elsevier Applied Science, London 1987.
- [50] T.M. Milly, D.H. Allen. A comparative study of non-linear rate-dependent mechanical constitutive theories for crystalline solids at elevated temperatures. Technical Report API-E-5-82, Virginia Polytechnic Inst, and State University, Blacksburg, 1982.
- [51] N.M. Newmark. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, 85: 67-94, 1959.
- [52] P. Perzyna. Fundamental problems in viscoplasticity. Advanced in Mechanics, 9: 243-377, 1966.
- [53] P. Perzyna. Thermodynamics of Elastic Materials (in Polish). PWN, Warszawa, 1978.
- [54] M.B. Rubin. A time integration procedure for plastic deformation in elastic-viscoplastic metals. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), 40(6): 846-871, 1989.
- [55] M.B. Rubin, S.R. Bodner. An incremental elastic-viscoplastic theory indicating a reduced modulus for non-proportional buckling. International Journal of Solid and Structures, 32(20): 2967-2987, 1995.
- [56] C. Sansour, F.G. Kollmann. Large viscoplastic deformations of shells. Theory and finite formulation. Computational Mechanics, 21(6): 512-525, 1998.
- [57] C. Sansour, F.G. Kollmann. On theory and numerics of large viscoplastic deformation. Computer Methods in Applied Mechanics and Engineering, 146: 351-351, 1997.
- [58] C. Sansour, W. Wagner. A model of finite strain viscoplasticity based on unified constitutive equations. Theoretical and computational considerations with applications to shell. Computer Methods in Applied Mechanics and Engineering, 191: 423-450, 2001.
- [59] C. Sansour, W. Wagner. Viscoplasticity based on additive decomposition of logarithmic strain and unified constitutive equations. Theoretical and computational considerations with reference to shell applications. Composite Structures, 81: 1583-1594, 2003.
- [60] F.K. Shati, I.I. Esat, H. Bahai. FEA modelling of visco-plastic behaviour of metal matrix composites. Finite Elements in Analysis and Design, 37: 263-272, 2001.
- [61] A.F. Skipor, S.V. Harren. Thermal cycling of temperature and strain rate dependent solder joints. Mechanics of Time-Dependent Materials, 2: 59-83, 1998.
- [62] S.-Ch. Song, Z.-P. Duan, D.-W. Tan. The application of B-P constitutive equations in the finite element analysis of high velocity impact. International Journal of Solid and Structures, 38: 5215-5222, 2001.
- [63] E.A. Steck. A stochastic model for the high-temperature plasticity of metals. International Journal of Plasticity, 1: 243-258, 1985.
- [64] M. Stoffel. Nichtlineare Dynamic von Flatten, der Rheinisch-Westfalischen Technischen Hochschule Aachen, Aachen, 2000.
- [65] M. Stoffel. Sensitivity of simulations depending on material parameter variations. Mechanics Research Communications, 32: 332-336, 2005.
- [66] J.C. Sung, J.D. Achenbach. Heating at a propagating crack tip in a viscoplastic material. International Journal of Fracture, 44(4): 301-309, 1990.
- [67] S. Tanimura. A practical constitutive equation covering a wide range of strain rates. Journal of International Engineering Science, 17: 997-1004, 1979.
- [68] Users handbook: MSCMARC Volume B: Element library, Version 2003. MSC.Software Corporation 2003.
- [69] Users handbook: MSCMARC Volume D: User subroutines and special routines, Version 2003. MSC.Software Corporation 2003.
- [70] M.A.H. van der Aa, P.J.G. Schreurs, F.P.T. Baaijens. Modelling of the wall ironing process of polymer coated sheet metal. Mechanics of Materials, 33: 555-572, 2001.
- [71] K. Woznica. Dynamique des Structures Elasto- Viscoplastique. Cahiers dc Mechanique, Lillc, 1998.
- [72] I. Woznica, P. Kłosowski. Evaluation of viscoplastic parameters and its application for dynamic behaviour of plates. Archives of Applied Mechanics, 70(8-9): 561-570, 2000.
- [73] Q.-S. Yang, Q.-H. Qin. Fiber interactions and effective elasto-plastic properties of short-fiber composites. Composite Structures, 54: 523-528, 2001.
- [74] F. Zairi, M. Nait-Abdelaziz, I. Woznica, J.-M. Gloaguen. Constitutive equations for the viscoplastic-damage behaviour of a rubber-modified polymer. European Journal of Mechanics A/Solids, 24: 169-182, 2005.
- [75] F. Zairi, K. Woznica, M. Nait-Abdelaziz. Phenomenological nonlinear modelling of glassy polymers. Comptes Rendus Mecanique, 333: 359-364, 2005.
- [76] F.J. Zerilli, R.W. Armstrong. Dislocation-mechanics-based constitutive relations for material dynamics calculations. Journal of Applied Physics, 61(5): 1816-1825, 1987.
- [77] Ch. Zhang, I.D. Moore. Nonlinear mechanical response of high density Polyethylenc. Part 11: Uniaxial constitutive modeling. Polymer Engineering and Science, 37(2): 414-420, 1997.
- [78] Ya.A. Zhuk, 1.K. Senchenkov, V.I. Kozlov, G.A. Tabieva. Axisymmctricdynamic problem of coupled thermoplasticity. International Applied Mechanics, 37(10): 1311-1317, 2001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0032-0032