Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 9, nr 2 | 41-47
Tytuł artykułu

Musculotendon forces derived by different muscle models

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The accuracy, feasibility and sensitivity of several different methods for calculating muscle forces during functional activities in humans were investigated. The upper extremity dynamic system was chosen, where the flexion–extension of elbow joint was studied. To counteract the redundant mechanisms we adopted optimization criteria with and without models of individual muscles according to their active and passive properties. Comparisons with known movements solved by inverse dynamics approach and optimization techniques provided similar results for all optimization criteria. Moreover, if muscle models with active and passive properties are included in these analyses, it is relatively easy to calculate muscle forces of both agonists and antagonists. These approaches may be used to provide input data for dynamic FEM stress analysis of bones and bone–implant systems.
Wydawca

Rocznik
Strony
41-47
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
  • Czech Technical University in Prague, Faculty of Mechanical Engineering
Bibliografia
  • [1] MARTIN C.F., SCHOVANEC L., Muscle mechanics and dynamics of ocular motion, Journal of Mathematical Systems, Estimation and Control, 1998, 8, 1–15.
  • [2] MARTIN C.F., SCHOVANEC L., The control and mechanics of human movement systems, Progress in Systems and Control Theory, 1999, 25, 173–202.
  • [3] PANDY M.G., ZAJAC F.E., Optimal muscular coordination strategies for jumping, Journal of Biomechanics, 1991, 24, 1–10.
  • [4] ZAJAC F.E., Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control, Critical Rewiews in Biomedical Engineering, 1989, 17, 359–411.
  • [5] FUNG Y.C., Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, Ltd., Berlin 1981.
  • [6] HUXLEY A.F., Cross-bridge action: Present views, prospects, and unknowns, [in:] W. Herzog (editor), Skeletal Muscle Mechanics, J. Willey and Sons, Ltd., Chichester, 2000.
  • [7] MCMAHON T.A., Muscles, Reflexes, and Locomotion, Princeton University Press, Princeton, New Yersey, 1984.
  • [8] GORDON A.M., HUXLEY A.F., The variation in isometric tension with sarcomere length in vertebrae muscle fibers, Journal of Physiology, 1966, 184, 170–192.
  • [9] MASHIMA H., AKAZAWA K., HUSHIMA H., FUJII K., The force– load–velocity relation and the viscous-like force in the frog skeletal muscle, Japanese Journal of Physiology, 1972, 22, 103–120.
  • [10] PANDY M.G., ANDERSON F.C., HULL D.G., A parameter optimization approach for the optimal control of large-scale musculoskeletal systems, Journal of Biomechanical Engineering, 1992, 114, 450–460.
  • [11] ZATSIORSKI V.M., Kinetics of Human Motion, Human Kinetics, Champaign, 2002.
  • [12] VEGER H.E.J., YU B., AN K.N., ROZENDAL R.H., Parameters for modeling the arm, Journal of Biomechanics, 1997, 30, 647–652.
  • [13] PRITULSKI B.I., TADAO I., ALBRECHT A.M., GREGOR R.J., Is coordination of two-joint leg muscles during load lifting consistent with the strategy of minimum fatigue?, Journal of Biomechanics, 1998, 31, 1024–1034
  • [14] CHENG E.J., BROWN I.E., LOEB G.E.D., BRAND R.A., Virtual muscle: a computational approach to understanding the effects of muscle properties on motor control, Journal of Neuroscience Methods, 2000, 101, 117–130.
  • [15] ZHENG N., FLEISIG G.S., ESCAMILLA R.F., BARRENTINE S.W., An analytical model of the knee for estimation internal forces during exercise, Journal of Biomechanics, 1998, 631, 963–967.
  • [16] LLOYD D.G., BESIER T.F., An EMG-driven muskuloskeletal model to estimate muscle forces and knee joint moments in vivo, Journal of Biomechanics, 2003, 36, 765–776.
  • [17] KAUFMAN K.R., AN K.N., LITCHY W.J., CHAO E.Y.S., Physiological prediction of muscle forces. II. Application to isokinetic exercise, Neuroscience, 1991, 40, 765–804.
  • [18] CROWNINSHIELD R.D., BRAND R.A., A physiologically based criterion of Musile force prediction in locomotion, Journal of Biomechanics, 1981, 14, 793–801.
  • [19] BUCHANAN T.S., LLOYD D.G., MANAL K., BESIER T.F., Neuromusculoskeletal modeling: Estimation of muscle forces and joint moments and movements from measurements of neural command, Journal of Applied Biomechanics, 2004, 20, 367–395.
  • [20] KOMI P.V., SALONEN M., JARVINEN M., KOKKO O., In vivo registration of Achilles tendon forces in man. I. Methodological development, International Journal of Sports Medicine, 1987, 8, 3–8.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0032-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.