Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 13, No. 3 | 457-471
Tytuł artykułu

Contact analysis using Trefftz and interface finite elements

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hybrid-Trefftz (HT) finite element (FE) analysis of two-dimensional elastic contact problems is addressed with the aid of interface elements and an interfacial constitutive relation. This paper presents the formulation of a four-noded HT finite element for discretizing the contacting bodies and a four-noded interface element that could be embedded in the prospective contact zone for simulating the interaction behaviour. Due to the superior performance, the Simpson-type Newton--Cotes integration scheme is utilized to compute interface element formulation numerically. In order to evaluate the applicability of the present approach two benchmark examples are investigated in detail. Comparisons have been made between the results by the present approach and analytical as well as traditional FE solutions using ABAQUS software.
Wydawca

Rocznik
Strony
457-471
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
  • Central Queensland University, Centre for Railway Engineering, QLD 4702, Australia
Bibliografia
  • [1] D. Chamoret, P. Saillard, A. Rassincux, J.M. Bergheau. New smoothing procedures in contact mechanics. Journal of Computational and Applied Mathematics, 168: 107-116, 2004.
  • [2] R.A. Day, D.M. Potts. Zero thickness element-numerical stability and application. Int. J. Number Meth. Anal. Geomech., 18: 689-708, 1994.
  • [3] J.A.T. Freitas, Z.M. Wang. Hybrid-Trefftz stress elements for elastoplasticity. Int. J. Numer. Meth. Engny., 43: 655-683, 1998.
  • [4] A. Gens, I. Carol, E.E. Alonso. An interface element formulation for the analysis of soil reinforcement interaction. Computers and Geoteehnics, 7: 133-151, 1988.
  • [5] R.E. Goodman, R.L. Taylor, T.L. Brekke. A model for mechanics of jointed rock. J. Soil Mech., Foundation ASCE, 94: 19-43, 1968.
  • [6] D.V. Griffiths, I.M. Smith. Numerical methods for engineers. Black Scientific Publications, London, 1991.
  • [7] L.R. Herrmann. Finite element analysis of contact problems. J. Eng. Mech. ASCE, 104: 1043-1059, 1978.
  • [8] Ch. Hochard. A Trefftz approach to computational mechanics. Int. J. Numer. Meth. Engng., 56: 2367-2386, 2003.
  • [9] J. Jirousek, L. Guex. The hybrid-Trefftz finite element model and its application to plate bending. Int. J. Num. Meth. Engng., 23: 651-693, 1986.
  • [10] J. Jirousek, N. Leon. A powerful finite element for plate bending. Comput. Methods Appl. Mech. Eng.. 12: 77-96, 1977.
  • [11] J. Jirousek, Q.H. Qin. Application of hybrid-Trefftz element approach to transient heat conduction analysis. Comput. Struct., 58: 195-201, 1996.
  • [12] J. Jirousek, P. Teodorescu. Large finite element method for the solution of problems in the theory of elasticity. Comput. Struct., 15: 575-587, 1982.
  • [13] J. Jirousek, A. Venkatesh. Hybrid Trefftz plane elasticity elements with p-method capabilities. Int. J. Numer. Meth. Engng., 35: 1443-1472, 1992.
  • [14] V.N. Kaliakin. J. Li. Insight into deficiencies associated with commonly used zero-thickness interface elements. Computers and Geotechnics, 17: 225-252, 1995.
  • [15] M.G. Knight, L.A. Lacerda, L.C. Wrobel, J.L. Henshall. Parametric study of the contact stresses around spherical and cylindrical inclusions. Computational Materials Science, 25: 115-121, 2002.
  • [16] X.Y. Lei. Contact friction analysis with a simple interface element. Comput. Methods Appl. Mech. Engrg.. 190: 1955-1965, 2001.
  • [17] A. Pantano, R.C. Averill. A penalty-based finite element interface technology. Comput Struct., 80: 1725 1748, 2002.
  • [18] Q.H. Qin. Hybrid-Trefftz finite element method for Reissner plates on an elastic foundation. Comp. Meth. Appl. Mech. Eng., 122: 379-392, 1995.
  • [19] Q.H. Qin. The Trefftz Finite and Boundary Element Method. WIT Press, Southampton, 2000.
  • [20] Q.H. Qin. Variational formulations for TFEM of piezoelectricity. Int. J. Solids Struct., 40: 6335-6346, 2003.
  • [21] Q.H. Qin. Solving anti-plane problems of piezoelectric materials by the Trefftz finite element approach. Computational Mechanics, 31: 461-468, 2003.
  • [22] Q.H. Qin. Dual variational formulation for Trefftz finite element method of elastic materials. Mechanics Research Communications, 31: 321-330, 2004.
  • [23] Q.H. Qin. Formulation of hybrid Trefftz finite element method for elastoplasticity. Applied Mathematical, Modelling, 29: 235-252, 2005.
  • [24] J.C.J. Schellekens, R.D. Borst. On the numerical integration of interface elements. Int. J. Solids Struct.. 36: 43-66,1993.
  • [25] M. Stippes, H.B. Wilson, F.N. Jr Krull. A contact stress problem for a smooth disk in an infinite plate. In: Proceedings 4th U.S. National Congress of Applied Mechanics, ASME, 799-806, 1962.
  • [26] K.Y. Wang, Q.H. Qin, K.L. Kang. A modified isoparametric mapping fill method to display color mapping of data. Advances in Engineering Software, 35: 585-591, 2004.
  • [27] K.Y. Wang, Q.H. Qin, K.L. Kang, J.S. Wang. A direct constraint-Trefftz FEM for analyzing elastic contact problems. Int. J. Numer. Meth. Engng., 63: 1694-1718, 2005.
  • [28] E. Wilson. The static condensation algorithm. Int. J. Numer. Meth. Engng., 8: 199-203, 1974.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0025-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.