Warianty tytułu
Języki publikacji
Abstrakty
Cardiovascular disease is one of the most frequent reasons of mortality in the western word. Nowadays the mechanical properties of biological soft tissues were treated from a continuum mechanical perspective. The aim of this article is to investigate the mechanical response of arterial tissue. We present some three-dimensional finite element model to study the mechanical effects. The arterial wall is composed mainly of an isotropic matrix materiał (elastin) and collagen fibers from two families which are arranged in symmetncal spirals. These fibers induce the anisotropy in the materiał response. So the constitutive law of an artery is orthotropic. We want to develop a new constitutive law for arterial wall mechanics. In addition we make a comparative study of some material model used in the literature to describe the mechanical response of arteries. These are the following models: 1. Linearly elastic model. 2. Neo-Hookean model for incompressible materials. 3. Mooney-Rivlin model for incompressible materials. For this reason we make uniaxial and biaxial measurements to have appropriate parameters for the underlying material models. We investigate the biomechanical properties of strips from human cerebral aneurysms from surgery and cadavers. (An aneurysm is a bulge along a blood vessel.) Meridional and circumferential. thick and thin parts were distinguished respectively. This paper focuses on the analysis of the haemodynamic pattern and biophysical properties of cerebral aneurysms. diagnosed aiid delineated in living human individuals. The aim of this research is to estimate stresses at critical points of the aneurysm wall and its parent artery, and to estimate the likelihood of a later aneurysm rupture.
Czasopismo
Rocznik
Tom
Strony
3-22
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
autor
- Budapest University of Technology and Economics, 1111 Budapest, Muegyetem r.3, Hungary, brigitta.toth@biomech.bme.hu
autor
- Clinical Research Department, Second Institute of Physiology, Semmelweis University of Medicine, 1082 Budapest, ÜllĘi út 78/a., Hungary, raffai@elet2.sote.hu
autor
- Budapest University of Technology and Economics, 1111 Budapest, MĦegyetem r. 3., Hungary, ibojtar@mail.bme.hu
Bibliografia
- [1] FONYO A., Book of Medical Physiology (in Hungarian), Medicina, Budapest, 1999.
- [2] CHOUNG C.J., FUNG Y.C., Three-dimensional stress distribution in arteries, J. Biomech. Engr., 1983, 105, 268–274.
- [3] STEINMAN D.A., Image-based computational simulation of flow dynamics in a giant intracranial aneurysm, American J. of Neuroradiology, 2003, 24, 559–566.
- [4] VORP D.A., RAJAGOPAL K.R., SMOLINSKY P.J., BOROVETZ H.S., Identification of elastic properties of homogeneous orthotropic vascular segments in distension, J. Biomech., 1995, 28, 501–512.
- [5] MONOS E., Hemodinamika: a vérkeringés dinamikája. SE egyetemi jegyzet, Budapest, 2001.
- [6] HUDETZ G., MONOS E., A viscoelastic model of mechanically induced and spontaneous contractions of vascular smooth muscle, Acta. Physiol. Hung., 1985, 65(2), 109–123.
- [7] VAN DIJK M., WIERINGA P., VAN DER MEER A.M., LAIRD D.J., Mechanics of resting isolated single vascular smooth muscle cells from bovine coronary artery, Am. J. Physiol., 1984, 246(3 Pt 1), C277–C287.
- [8] VIIDIK C., DANIELSEN C., OXLUND H., On fundamental and phenomenological models, structure and mechanical properties of collagen, elastin and glycosaminoglycan complexes, Biorheology, 1982, 19, 437–451.
- [9] STEFANDALIS C., STRATOS C., VLACHOPOULOS S., MARAKAS H., BOUDOULAS S., TOUTOUZAS L., SIOROS, TOUTOUZAS P., Pressure-diameter function and a new method of determination, Circulation, 1995, 92(8), 2210–9.
- [10] MONOS E., Biomechanics of vascular wall, Medicina, Budapest, 1986.
- [11] HOLZAPFEL G.A., WEIZSÄCKER H.W., Biomechanical behavior of the arterial wall and its numerical characterization, Comp. Biol. Med., 1998, 28, 377–392.
- [12] HOLZAPFEL G.A., GASSER T.C., A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications, Comput. Methods Appl. Mech. Engr., 2000.
- [13] HOLZAPFEL G.A., GASSER T.C., OGDEN R.W., A new constitutive framework for arterial wall mechanics and a comparative study of material modes, Journal of Elasticity, címĦ folyóirat, 2000, 61, 1–48.
- [14] HOLZAPFEL G.A., Nonlinear Continuum Mechanics, Hyperelastic Materials, 2002.
- [15] HOLZAPFEL G.A., Nonlinear Solid Mechanics. A Continuum Approach for Engineering, John Wiley & Sons, Chichester, 2000.
- [16] LANGEWOUTERS G.J., WESSELING K.H., GOEDHARD W.J.A., The pressure dependent dynamic elasticity of 35 thoracic and 16 abdominal human aorta in vitro described by a five element model, J. Biomech., 1985, 18(8), 613–620.
- [17] NÁDASY G.L., MONOS E., MOHÁCSI E., KOVÁCS A.G.B., The background of hysteretic properties of human umbilical arterial wall, Acta Physiol. Hung., 1988, 71(3), 347–361.
- [18] FINLAY H.M., MCCULLOUGH L., CANHAM P.B., Three-dimensional collagen organization of human brain arteries at different transmural pressures, J. Vasc. Res., 1995, 32, 301–312.
- [19] TAKAMIZAWA H., HAYASHI K., MATSUDA T., Isometric biaxial tension of smooth muscle in isolated cylindrical segments of rabbit arteries, Am. J. Physiol., 1992, 236(32), H30–H34.
- [20] WEIZSÄCKER H.W., PINTO J.G., Isotropy and anisotropy of the arterial wall, J. Biomech., 1988, 21, 477–487.
- [21] WEIZSÄCKER H.W., LAMBERT H., PASCALE K., Analysis of the pound carotid arteries, J. Biomech., 1983, 16, 703–715.
- [22] RHODIN J.A.G., Architecture of vessel wall, [in:] H.V. Sparks Jr., D.F. Bohr, A.D. Somlyo and S.R. Geiger (Editors), Handbook of Physiology. The Cardiovascular System, 2. kötet, 1–31 oldal. American Physiologial Society, Bethesda, Maryland, 1980.
- [23] HUMPHREY J.D., KANG T., SAKARDA P., ANJANAPPA M., Computation with a new electromechanical test system, Ann. Biomed. Eng., 1993, 21(1), 33–4.
- [24] APTER J.T., RABINOWITZ M., CUMMINGS D.H., Correlation of viscoelastic properties of large arteries with microscopic structure, Circ. Res., 1966, 19, 104–121.
- [25] TAKAMIZAWA K., HAYASHI K., Strain energy density function and uniform strain hypothesis for arterial mechanics, J. Biomech., 1987, 20, 7–17
- [26] HANSEN M.E., YUCEL E.K., MEGERMAN J., L´ITALIEN G.J., ABOTT W.M., Determination of human arterial compliace, Cardiovasc. Intervent. Radiol., 1994, 17(1), 22–26.
- [27] O’ROURKE F.M., Vascular mechanics in the clinic, J. of Biomechanics, 2003, 36, 623–630.
- [28] THUBRIKAR M.J., Wall stress studies of abdominal aortic aneurysm in a clinical model, Annals of vascular surgery, 2001, 15, 355–366.
- [29] OROSZ M., MOLNÁRKA G., MONOS E., Curve fitting methods and mechanical models for identification of viscoelastic parameters of vascular wall – a comparative study, Mon. Sci. Monit., 1997, 3(4), 599–604.
- [30] OROSZ M., MOLNÁRKA G., NÁDASY G.L., RAFFAI G., KOZMANN G., MONOS E., Validity of viscoelastic models of vessel wall, 64th An. Meeting of the Hung. Physiol. Soc., Budapest, 1997.
- [31] OROSZ M., MOLNÁRKA G., GILÁNYI M., MONOS E., Computerized identification of viscoelastic parameters of biological tissues using viscoelastic models, Proceedings of COMBIO´96, KFKI- 1996-06/M-H, K. Tarnay and Z. Fazekas (Editors), 85–90, 1996.
- [32] OROSZ M., MOLNÁRKA G., TÓTH M., NÁDASY G.L., MONOS E., Viscoelastic behavior of vascular wall simulated by generalized Maxwell models – a comparative study, Med. Sci. Monit., 1999, 5(3), 549–555.
- [33] TÓTH M., G NÁDASY. L., NYÁRY I., KERÉNYI T., OROSZ M., MOLNÁRKA G., MONOS E., Sterically inhomogeneous viscoelastic behavior of human saccular cerebral aneurysms, Érbetegségek, IV/2, J. Vasc. Res., 1997, 35, 345–355.
- [34] ZATZMAN M., STACY R.W., RANDALL J., EBERSTEIN A., Time course of stress relaxation in isolated arterial segments, Am. J. Physiol., 1954, 177, 299–307.
- [35] DOBRIN P., ANIDJAR S., Pathophysiology of arterial aneurisms, Arch. Mal. Coeur., 1991, 84(3), 57–62.
- [36] DOBRIN P., CANFIELD T., Identification of smooth muscle series elastic component in inact carotid artery, Am. J. Physiol., 1977, 232(2), H122–H130
- [37] DOBRIN P., Biaxial anisotropy of dog carotid artery, J. Biomech., 1986, 19(5), 351–358.
- [38] DOBRIN P., Vascular muscle series elastic element stiffness during isometric contraction, Circ. Res., 1974, 34, 242–250.
- [39] LERMUSIAUX P., LEROUX C., Aortic aneurysm: construction of a life-size model by rapid prototyping, Annals of vascular surgery, 2001, 15, 131–135.
- [40] VAN LOON P., Length force and volume–pressure relationship, 1977.
- [41] COX R.H., Influence on muscle length on series elasticity on arterial smooth muscle, Am. J. Physiol., 1978, 234(5), C146–C154.
- [42] COX R.H., Viscoelastic properties of canine pulmonary arteries, Am. J. Physiol., 1984, 246, H90– H96.
- [43] ASPDEN R.M., Fibre reinforcing by collagen in cartilage and soft connective tissues, Proc. R. Soc. Lond. B., 1994, 258, 195–200.
- [44] OGDEN R.W., SCHULZE-BAUER C.A.J., Phenomenological and structural aspects of the mechanical response of arteries, Mechanics in Biology, J. Casey, G. Bao (Editors), New York, AMD-Vol. 242/BED-Vol. 46, ASME 2000, The American Society of Mechanical Engineers, 125–140.
- [45] OGDEN R.W., Nearly isochoric elastic deformations: Application to rubberlike solids, J. Mech. Phys. Solids., 1987, 26, 37–57.
- [46] RÖHLICH P., Szövettan egyetemi tankönyv I. kötet, Folpress Nyomdaipari Kft., 1999.
- [47] KANG S.M., HA J.W., CHUNG N., JANG K.J., SHIN M.S., RIM S.J., The elastic properties of the descending thoracic aorta in patient with a stroke, Echocardiographe, 2000.
- [48] DENG S.X., TOMIOKA J., DEBES J.C., FUNG Y.C., New experiments on shear modulus of elasticity of arteries, Am. J. Physiol., 1994, 266, H1–H10
- [49] AZUMA T., HASEGAWA M., A rheological approach to the architecture of arterial walls, Jpn. Physiol., 1971, 21, 27–47.
- [50] IMURA T., YAMAMOTO K., KANAMORI K., MIKAMI T., YASUDA H., Measurement of the elastic properties of the human abdominal arteries, 1986.
- [51] FUNG Y.C., FRONEK K., PATITUCCI P., Pseudoelasticity of arteries and the choice of its mathematical expression, Am. J. Physiol., 1979, 237, H620–H631.
- [52] FUNG Y.C., Biomechanics: Mechanical Properties of Living Tissue, Springer-Verlag, New York, 2, Kiadás, 1993.
- [53] FUNG Y.C., Biomechanics: Motion, Flow, Stress, and Growth, Springer-Verlag, New York, 1990, 11.3 (fejezet).
- [54] FUNG Y.C., Mechanical Properties and Active Remodeling of Blood Vessels Biomechanics, Springer-Verlag, New York, 1990, 8 (fejezet).
- [55] LUO Y., COOKE R., PATE E., A modelof stress relaxation in cross-bridge systems: effect of a series elastic element, Am. J. Physiol., 1993, 256, C279–C288.
- [56] LUO Y., COOKE R., PATE E., Effect of series elasticity on delay in development on tension relative to stiffness during muscle activation, Am. J. Physiol., 1994, 267, C1598–C1606.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0021-0001