Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | Vol. 12, No. 1 | 65-81
Tytuł artykułu

Refined least squares approach to the initial-value problems unstable in the Lyapunov sense

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents application of the Refined Least Squares method to the initial value problems that are instable in the Lyapunov sense. There is shown that the method is not sensitive to this kind of instability. The method is especially useful in search of particular integral of the considered problem. The method has an additional tool to evaluate quality of approximation. The approach is based on minimization of the functional, which square root can is generalized norm L-2 and can be used to estimate global error of approximation. The expected value of the functional is equal to zero. The approximation is satisfactory if both results converge and functional reaches value close to zero. The consideration is illustrated with examples. There are shown initial-value problems which have physical sense and are applicable in mechanics. Whereas numerical approach may fail for these tasks, Refined Least Squares approach returns reliable approximation. The last example presents application of the special feature of the method, which allows neglecting influence of general integral on the solution. The method may be used in sensitivity analysis, search of the problem parameters, verification of numerical methods and an antonymous method in computational physics and mechanics.
Wydawca

Rocznik
Strony
65-81
Opis fizyczny
Bibliogr. 8 poz., wykr.
Twórcy
  • Silesian University of Technology, Faculty of Civil Engineering [Politechnika Ślaska], Akademicka 5, 44-101 Gliwice
Bibliografia
  • [1] R. L. Burden and J.D. Faires, Numerical Analysis, fifth edition. PWS Publishing Company, Boston, 1993.
  • [2] S. Wagon, Mathematica in Action, second edition. Springer-Verlag, New York, 1999.
  • [3] R. A. Walentyński, A least squares method for solving initial-boundary value problems. Innovations in Mathematics, Proceedings of the Second International Mathematica Symposium, Y. Keranen, P. Mitic. and A. Hietamaki, eds. Rovaniemen Ammattikorkeakoulun Julkaisuja, Computational Mechanics Publications, Boston, MA; Southampton, UK, pp. 483-490, 1997.
  • [4] R. A. Walentyński, Computer assisted analytical solution of initial-boundary value problems. In: Computer Methods in Mechanics, Proceedings of the 13th PCCMM, A. Garstecki and J. Rakowski, eds. Poznań University of Technology, Poznań, pp. 1363-1400, 1997.
  • [5] R. A. Walentyński, Refined least squares method for shells boundary value problems. In: Symbolic Computation: New Horizons, Proceedings of the Fourth International Mathematica Symposium, Y. Tazawa, S. Sakakibara, S. Ohashi and Y. Uemura eds. Tokyo Denki University Press, Tokyo, pp. 511-518, electronic extended version on the conference CDROM, 2001.
  • [6] R. A. Walentyński, Dealing with shell’s boundary conditions with the refined least squares method. Proceedings of the 5th World Congress on Computational Mechanics (WCCM V), H. A. Mang, F. G. Rammerstorfer and J. Eberhardsteiner, eds. Vienna University of Technology, Vienna, pp. 10, 2002 http://wccm.tuwien.ac.at/publications/Papers/fp80303.pdf
  • [7] R. A. Walentyński, Application of Computer Algebra in Symbolic and Boundary-Value Problems of Theory of Shells. Silesian University of Technology Press, Civil Engineering (100)1587, Gliwice, 2003.
  • [8] S. Wolfram, The Mathematica Book, fourth edition. Cambridge University Press and Wolfram Research, Inc., New York and Champaign, 1999.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0013-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.