Czasopismo
2004
|
Vol. 11, No. 4
|
321-335
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In the cellular automata simulation, the object under consideration is divided into small cells and the simulation is performed according to the local rule which is defined as the local relationship among cells. In this paper, the concept of cellular automata is applied to the design scheme of truss structures. First, truss elements are considered as the cells of the cellular automata and the local rule is derived from the optimization problem. The objective functions are defined to minimize the total weight of the structure and to obtain even stress distribution in the whole structure. The constraint conditions are introduced in order to define the local rule. The present method is applied to the design of the plane and the three-dimensional truss structures such as Schwedler and Lamella Domes. The convergence histories of the total weight and the mean and the maximum stresses are shown in order to discuss the property of the present method.
Słowa kluczowe
Rocznik
Tom
Strony
321-335
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
autor
- Nagoya University, Graduate School of Information Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan, kita@is.nagoya-u.ac.jp
autor
- Nagoya University, Graduate School of Engineering, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
autor
- Nagoya University, Graduate School of Information Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
autor
- Nagoya University, Graduate School of Information Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
Bibliografia
- [1] Doolen, G.D., Frisch, U., Hasslacher, B., Orszag, S., Wolfram, S. (1987) Lattice Gas Methods for Partial Differential Equations. Addison-Wesley Pub. Co., 1-st edition
- [2] Eissler, W., Drtina, P., Frohn, A. Cellular automata simulation of flow around chains of cylinders (1992) Transaction of ASME, 61 (585), pp. 1109-1114.
- [3] Clayton, W.(1993) Adventures in Artificial Life. Que Co., 1-st edition
- [4] Wolfram, S. (1994) Cellular Automata and Complexity. Adison-Wesley Publishing Company, 1-st edition
- [5] Garzon, M. (1995) Models of Massive Parallelism. Springer Verlag, 1-st edition
- [6] Gaylord, R., Nishidate, K. (1996) Modeling Nature: Cellular Automata Simulations with Mathematics. Springer Verlag, 1 edition
- [7] Xie, Y.M., Steven, G.P. A simple evolutionary procedure for structural optimization (1993) Computers and Structures, 49 (5), pp. 885-896. doi: 10.1016/0045-7949(93)90035-CLocate full-text (opens in a new window) View at Publisher
- [8] Xie, Y.M., Steven, G.P. Optimal design of multiple load case structures using an evolutionary procedure (1994) Engineering Computations, 11 (4), pp. 295-302. Cited 104 times. doi: 10.1108/02644409410799290
- [9] Xie, Y.M., Steven, G.P. A simple approach to structural frequency optimization (1994) Computers and Structures, 53 (6), pp. 1487-1491. doi: 10.1016/0045-7949(94)90414-6
- [10] Xie, Y.M., Steven, G.P. Evolutionary structural optimization for dynamic problems (1996) Computers and Structures, 58 (6), pp. 1067-1073. http://www.journals.elsevier.com/computers-and-structures/doi: 10.1016/0045-7949(95)00235-9
- [11] Zhao, C., Steven, G.P., Xie, Y.M. Effect of initial nondesign domain on optimal topologies of structures during natural frequency optimization (1997) Computers and Structures, 62 (1), pp. 119-131. http://www.journals.elsevier.com/computers-and-structures/ doi: 10.1016/S0045-7949(96)00204-0
- [12] Zhao, C., Steven, G.P., Xie, Y.M. A generalized evolutionary method for natural frequency optimization of membrane vibration problems in finite element analysis (1998) Computers and Structures, 66 (2-3), pp. 353-364. http://www.journals.elsevier.com/computers-and-structures/ doi: 10.1016/S0045-7949(97)00054-0
- [13] Yang, X.Y., Xie, Y.M., Steven, G.P., Querin, Q.M. Bi-directional evolutionary method for frequency optimization (1998) Structural Optimization (Proc. 1-st Australasian Conf. Struct. Opt., 1998), pp. 231-237.
- [14] Kim, H., Steven, G.P., Querin, Q.M., Xie, Y.M. Development of an intelligent cavity creation (ICC) algorithm for evolutionary structural optimization (1998) Structural Optimization (Proc. 1-st Australasian Conf. Struct. Opt., Australia, 1998), pp. 241-250.
- [15] Young, V., Querin, Q.M., Steven, G.P., Xie, Y.M. 3D bi-directional evolutionary structural optimisation (BESO) (1998) Structural Optimization (Proc. 1-st Australasian Conf. Struct. Opt., 1998), pp. 275-282.
- [16] Guan, H., Steven, G.P., Xie, Y.M. Evolutionary optimization of bridge type structures (1998) Structural Optimization (Proc. 1st Australasian Conf. Struct. Opt., Australia, 1998), pp. 335-342.
- [17] Chu, D.N., Xie, Y.M., Hira, A., Steven, G.P. Evolutionary topology optimization of structures subject to displacement (1998) Structural Optimization (Proc. 1-st Australasian Conf. Struct. Opt., 1998), pp. 419-426.
- [18] Nha, C.D., Xie, Y.M., Steven, G.P. An evolutionary structural optimization method for sizing problems with discrete design variables (1998) Computers and Structures, 68 (4), pp. 419-431. http://www.journals.elsevier.com/computers-and-structures/ doi: 10.1016/S0045-7949(98)00062-5
- [19] Querin, O.M., Steven, G.P., Xie, Y.M. Topology optimisation of structures with material and geometric non-linearities (1996) 6th Symposium on Multidisciplinary Analysis and Optimization, pp. 1812-1818.
- [20] Querin, O.M. (1997) Evolutionary Structural Optimisation: Stress Based Formulation and Implementation. PhD thesis, The University of Sydney.
- [21] Xie, Y.M., Steven, G.P. (1997) Evolutionary Structural Optimization. Cited 638 times. Springer Verlag, 1-st edition.
- [22] Inou, N., Shimotai, N., Uesugi, T. A cellular automaton generating topological structures (1994) Proceedings of SPIE - The International Society for Optical Engineering, 2361, pp. 47-50. http://spie.org/x1848.xml doi: 10.1117/12.184866
- [23] Inou, N., Uesugi, T., Iwasaki, A., Ujihashi, S. Self-organization of mechanical structure by cellular automata (1998) Key Engineering Materials, (149 PART II), pp. 1115-1120.
- [24] Sakamoto, J., Oda, J. Simulation of adaptive bone remodeling by using cellular automata (1995) Structural Optimization (Proc. 4-th International Conference on Computer Aided Optimum Design of Structures, Miami, FL, 1995), pp. 93-100. S. Hernandez, M. El-Sayed, and C. A. Brebbia eds., Comp. Mech. Pub., Miami.
- [25] Kundu, S., Oda, J., Koishi, T. A self-organizing approach to optimization of structural plates using cellular automata (1997) Structural and Multidisciplinary Optimization Proc. 2-nd World Congress of Structural and Multidisciplinary Optimization, Zakopane, Poland, 1997, pp. 173-180.
- [26] Kundu, S., Oda, J., Koishi, T. Design computation of discrete systems using evolutionary learning (1997) Structural and Multidisciplinary Optimization Proc. 2nd World Congress of Structural and Multidisciplinary Optimization, Zakopane, Poland, 1997, pp. 173-180. W. Gutkowski and Z. Mróz, Institute of Fundamental Technological Research, Polish Academy of Sciences.
- [27] Payten, W.M., Ben-Nissan, B., Mercer, D.J. Optimal topology design using a global self-organisational approach (1998) International Journal of Solids and Structures, 35 (3-4), pp. 219-237. journals.elsevier.com/international-journal-of-solids-and-structures/ doi: 10.1016/S0020-7683(97)00064-4
- [28] Payten, W.M., Law, M. Topology and reinforcement optimisation of flat plate and curved thin shell structures using adaptive self-organising density approach (1998) Structural Optimization (Proc. 1-st Australasian Conf. Struct. Opt., Australia, 1998), pp. 165-172.
- [29] Payten, W.M. A fractal interpretation for optimal structures (1998) Structural Optimization (Proc. 1-at Australasian Conf. Struct. Opt., Australia, 1998), pp. 533-540.
- [30] Rudolph, S., Alber, R. An evolutionary approach to the inverse problem in rule-based design representations (2002) Artificial Intelligence in Design '02, pp. 329-350.
- [31] Bendsoe, M. (1995) Methods for the Optimization of Structural Topology, Shape and Material. Cited 998 times. Springer Verlag, 1-st edition.
- [32] Mróz, Z., Bojczuk, D. Topology derivative concept in optimal design of structures (1999) Proc. 2-nd World Congress of Structural and Multidisciplinary Optimization, pp. 517-522.
- [33] Sokolowski, J., Zochowski, A. On the topological derivative in shape optimization (1999) SIAM Journal on Control and Optimization, 37 (4), pp. 1251-1272. doi: 10.1137/S0363012997323230
- [34] Zienkiewicz, O.C., Cheung, Y.K. (1967) The Finite Element Method in Structural and Continuum Mechanics. McGraw-Hill Ltd.
- [35] Bathe, K.-J., Wilson, E.D. (1976) Numerical Methods in Finite Element Analysis. Cited 2253 times. Prentice-Hall.
- [36] Bojczuk, D., Mróz, Z. Optimal topology and configuration design of trusses with stress and buckling constraints (1999) Structural Optimization, 17 (1), pp. 25-35.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0011-0050