Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 11, No. 2-3 | 145-153
Tytuł artykułu

Solving wave problems in infinite domain by using variable local DtN operators

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an iterative method for solving two-dimensional wave problems in infinite domains. The method yields a solution that satisfies Sommerfeld's radiation condition, as required for the correct solution of infinite domains excited only locally. This problem occurs in the solution of the wave equation in infinite domains when using an asymptotic local DtN (Dirichlet-to-Neumann) map in computational procedures applied to a finite domain. We are demonstrating that the amplitudes of the reflected fictive harmonics depend upon the wave number, the location of the fictive boundary, as well as on the DtN operator used in the computations. A constant value of the operator cannot sufficiently eliminate the amplitudes of all reflected waves, while the results are poor especially for higher harmonics. Thus, we are proposing an iterative method, which varies the tangential dependence of the operator in each computational step.
Wydawca

Rocznik
Strony
145-153
Opis fizyczny
Bibliogr. 14 poz., rys., wykr., tab.
Twórcy
autor
  • University of Maribor, Faculty of Civil Engineering, Smetanova 17, SI-2000 Maribor, Slovenia, igor.spacapan@uni-mb.si
Bibliografia
  • [1] A. Bayliss, E. Thrkel. Radiation boundary conditions for wave-like equations. Communications on Pure and Applied Mathematics; XXXIII: 707-725, 1980.
  • [2] J.B. Keller, D. Givoli. Exact non-reflecting boundary conditions. Journal of Computational Physics; 82: 172-192, 1989.
  • [3] D. Givoli, J.B. Keller. Non-reflecting boundary conditions for elastic waves. Wave motion; 12: 261-279, 1990.
  • [4] G.B. Porat, D. Givoli. Solution of unbounded domain problems using elliptic artificial boundaries. Communications in Numerical Methods in Engineering; 11: 735-741,1995.
  • [5] D. Givoli, I. Patlashenko. Optimal local non-reflecting boundary conditions. Applied Numerical Mathematics; 27(4): 367-384, 1998.
  • [6] D. Givoli, I. Harari. Exterior problems of wave propagation. Computer Methods in Applied Mechanics and Engineering; 164(1-2), 1998.
  • [7] J. Astley, K. Gerdes, D. Givoli, I. Harari. Finite elements for wave problems. Journal of Computational Acoustic; Special Issue; 8(1), 2000.
  • [8] D. Givoli. Recent advances in the DtN FE method . Archives of Computational Methods in Engineering; 6(2): 71-116, 1999.
  • [9] P.M. Pinsky, L.L. Thompson. Local high-order radiation boundary conditions for the two-dimensional time­dependent structural acoustics problem. Journal for Acoustical Society of America; 91(3) : 1320-1335, 1992.
  • [10] L.L. Thompson, P.M. Pinsky. New space-time finite element methods for fluid-structure interaction in exterior domains. Computational Methods for Fluid/Structure Interaction. AMD; 178: 101-120, 1993.
  • [11] T. Hohage, F. Schmidt, L. Zschiedrich. A new method for the solution of scattering problems. In B. Michielsen and F. Decavele (eds.) Proceedings of the JEE'02 Symposium, p. 251-256, Toulouse, ONERA, 2002.
  • [12] T. Hohage, F. Schmidt, L. Zschiedrich. Solving time-harmonic scattering problems based on the pole condition: theory. ZIB-Report 01-01, Zuse Institut Berlin, 2001.
  • [13] G. Aiello, S. Alfonzetti, S. Coco. Charge iteration: a procedure for the finite element computation of unbounded electrical fields. International Journal for Numerical Methods in Engineering; 37: 4147-4166, 1994.
  • [14] M. Premrov, I. Spacapan. Waves problems in infinite domains. Proceedings of The Eight International Conference on Civil and Structural Engineering Computing, Eisenstadt-Vienna, 19-21 September 2001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0011-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.