Czasopismo
2003
|
Vol. 10, No. 3
|
263-269
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The variational theory is the theoretical basis of the finite element method, meshfree particle methods and other modern numerical techniques. The present paper establishes a family of variational principles for nonlinear piezoelectricity. A new constitutive relation is suggested, which is deduced as a stationary condition of a generalized variational principle. Keywords: variational theory, piezoelectricity, constitutive equations.
Rocznik
Tom
Strony
263-269
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- College of Science, Donghau University 1882 Yan'an Xilu Road, Shanghai 200051, P.R. China
Bibliografia
- [1] F. Ashida, T.R. Tauchert. An inverse problem for determination of transient surface temperature from piezoelectric sensor measurement. ASME J. App. Mech., 65: 367-373, 1998.
- [2] D.S. Chandrasekharaiah. A generalized linear thermo-elasticity theory for piezoelectric media. ACTA Mechanica, 71: 39-49, 1998.
- [3] T.Y. Chen. Further correspondences between plane piezoelectricity and generalized plane strain in elasticity. Proc. R. Soc. Land., A454: 873-884, 1971.
- [4] W.Z. Chien. Method of high-order Lagrange multiplier and generalized variational principles of elasticity with more general forms of functionals. Applied Math. & Mech., 4(2): 137-150, 1983.
- [5] S.I. Chizhikov, N. G. Sorokin and V.S. Petrakov. The elastoelectric effect in the non-centrosymmetric crystals. In: Piezoelectricity, eds. G.W. Taylor et al., Gordon & Breach Science Publishers, New York, 75-91, 1985.
- [6] J. Curie, P. Curie. Development par compression de l'etricite polaire das les cristaux hemledres a faces inclinees. Bulletin No.4 de la Societee Mineralogique de France, 3, 1880.
- [7] J.H. He. Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo & Jet-Engines, 14(1): 23-28, 1997.
- [8] J.H. He. A variational theory for one-dimensional unsteady compressible flow: an image plane approach. Applied Math. Modelling, 22: 395-403, 1998.
- [9] J.H. He. Treatment shocks in transonic aerodynamics in meshless method: Part I Lagrange multiplier approach. Int. J. Turbo & Jet-Engines, 16(1): 19-26, 1999.
- [10] J.H. He. Hybrid problems of determining unknown shape of bladings in compressible S2-flow in mixed-flow turbomachinery via variational technique. Aircraft Engineering and Aerospace Technology, 71(2): 154-159, 1999.
- [11] J.H. He. On variational crisis and generalized variational principle of elasticity (in Chinese). J. University of Shanghai for Science & Technology, 21(2): 127-130, 1999.
- [12] J.H. He. An overview of variational crises and its recent developments (in Chinese). J. University of Shanghai for Sciences and Technology, 21(1): 29-35, 1999.
- [13] J.H. He. A variational principle for thermopiezoelectricity based on Chandrasekharaiah's generalized linear theory, J. University of Shanghai for Science and Technology, 21(4): 356-365, 1999.
- [14] J.H. He. Inverse problems of determining the unknown shape of oscillating airfoils in compressible 2D unsteady flow via variational technique. Aircraft Engineering and Aerospace Technology, 72(1): 18-24, 2000.
- [15] J.H. He. A Classical Variational Model for Micropolar Elastodynamics. International J. of Nonlinear Sciences and Numerical Simulation, 1(2): 133-138, 2000.
- [16] J.H. He. A Variational Model for Micropolar Fluids in Lubrication Journal Bearing. International J. of Nonlinear Sciences and Numerical Simulation, 1(2): 139-142 , 2000.
- [17] J.H. He. Coupled variational principles of piezoelectricity. Int. J. Engineering Science, 39(3), 323-341, 2001.
- [18] J.H. He. Generalized Hellinger-Reissner principle. ASME Journal of Applied Mechanics, 67(2), 326-331, 2000.
- [19] G.A. Maugin. The Mechanical Behavior of Electromagnetic Solid Continua. North-Holland, 1984
- [20] G.A. Maugin. Continuum Mechanics of Electromagnetic Solids. North-Holland-Amsterdam, 1988.
- [21] K. Washizu. Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford, 1982.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0009-0076