Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | Vol. 10, No. 1 | 69-79
Tytuł artykułu

Logarithmic strain measure in finite element modelling of anisotropic hyperelastic materials

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new finite element to analyze problems of anisotropic hyperelasticity is presented. The constitutive equations are derived by means of the energy method, which leads to the stress measure conjugate to the logarithmic strain. Equilibrium equation are integrated in the current configuration. Multiplicative - instead of additive - decomposition of the time derivative of a strain tensor function is applied as a crucial step that makes possible the formulation for anisotropic hyperelastic materials. Unlike previous known anisotropic large deformation models, the one here presented assures the energy conservation while using the anisotropic elastic constants and the logarithmic strain measure. It is underlined that for the first time a model including all these features is presented. Some numerical examples are shown to illustrate the results obtained with this model and to compare them with other known anisotropic models.
Wydawca

Rocznik
Strony
69-79
Opis fizyczny
Bibliogr. 16 poz.,, rys., wykr
Twórcy
  • Polish Academy of Sciences, Institute of Fundamental Technological Research, Świętokrzyska 21, 00-049 Warsaw, Poland
autor
  • Polish Academy of Sciences, Institute of Fundamental Technological Research, Świętokrzyska 21, 00-049 Warsaw, Poland
autor
  • Polish Academy of Sciences, Institute of Fundamental Technological Research, Świętokrzyska 21, 00-049 Warsaw, Poland
Bibliografia
  • [1] L. Anand. On H. Hencky approximate strain-energy function for moderate deformations. Transactions of ASME, 46: 78-82, 1979
  • [2] M.A. Crisfield. Nonlinear Finite Element Analysis of Solids and Structures, Vol. II - Advanced Topics. Wiley, Chichester, 1997.
  • [3] P. Dłużewski. Anisotropic hyperelasticity based upon general strain measures. Journal of Elasticity, 60: 119-129, 2000.
  • [4] R. Hill. Constitutive inequalities for isotropic elastic solids under finite strain. Proc. Roy. Soc. London Ser. A, 314: 457-472, 1970.
  • [5] R. Hill. Aspects of invariance in solid mechanics. Adv. Appl. Mech., 18: 1-75, 1978.
  • [6] A. Hoger. The stress conjugate to logarithmic strain. Int. J. Solids Structures, 23: 1645-1656, 1987.
  • [7] M. Kleiber, B. Raniecki. Elastic-plastic materials at finite strains. In: A. Sawczuk, G. Bianchi, eds., Plasticity Today: Modelling, Methods and Applications, 3-46. London, Int. Center Mech. Sci., Udine, Elsevier Appl. Sci. Publ., 1985.
  • [8] Th. Lehmann, Z-H. Guo, H. Liang. The conjugacy between Cauchy stress and logarithm of the left stretch tensor. Eur. J. Mech. A / Solids, 10: 395-404, 1991.
  • [9] R.W. Ogden. Non-linear Elastic Deformations. Ellis Horwood, Chichester, 1984.
  • [10] B. Raniecki, H.V. Nguyen. Isotropic elastic-plastic solids at finite strain and arbitrary pressure. Arch. Mech., 36: 687-704, 1984.
  • [11] J.R. Rice. Continuum mechanics and thermodynamics of plasticity in relation to micro-scale deformation mechanisms. In: S.A. Argon, ed., Continuum Equations in Plasticity, 23-75. MIT Press, Cambridge, Mass, 1975.
  • [12] B.R. Seth. Generalized strain measure with applications to physical problems. In: M. Rainer and D. Abir, eds., Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics, Proc. Int. Symp. Haifa, April 23-27, 1962. Pergamon Press, Oxford, 1964.
  • [13] S.V. Vaidya, G.C. Kennedy. Compressibility of 22 elemental solids to 45KB. J. Phys. Chern. Solids., 31: 2329-2345, 1970.
  • [14] N.J. Walker, G.A. Saunders, J.E. Hawkey. Soft TA models and an harmonicity in cadmium telluride. Physical Review B, 52(5): 1005-1018, 1985.
  • [15] H. Xiao, O.T. Bruhns, A. Meyers. Hypo-elasticity model based upon the logarithmic stress rate. J. Elasticity, 47: 51-68, 1997.
  • [16] O.C. Zienkiewicz, R.J. Taylor. The Finite Element Method. McGraw-Hill, London, 1991.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0009-0064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.