Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | Vol. 10, No. 1 | 34-43
Tytuł artykułu

Limitation of the single-domain numerical approach: Comparisons of analytical and numerical solutions for a forced convection heat transfer problem in a composite duct

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to establish the bounds of applicability of the single-domain numerical approach for computations of convection in composite porous/fluid domains. The large number of papers that have utilized this numerical approach motivates this research. The popularity of this approach is due to the simplicity of its numerical formulation. Since the utilization of the single-domain numerical approach does not require the explicit imposing of any boundary conditions at the porous/fluid interface, the aim of the this research is to investigate whether this method always produces accurate numerical solutions.
Wydawca

Rocznik
Strony
34-43
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
  • Department of Mechanical and Aerospace Engineering North Carolina State University Campus, USA
Bibliografia
  • [1] C. Beckermann, R. Viskanta. Double-diffusive convection during dendritic solidification of a binary mixture. Physico-Chemical Hydrodynamics, 10: 195-213, 1988.
  • [2] A. Bejan. Heat Transfer. Wiley, New York, 1993.
  • [3] W.D. Bennon, F.P. Incropera. A continuum model for momentum, heat and species transport in binary solid­liquid phase change systems - II. Application to solidification in a rectangular cavity. Int. J. Heat Mass Transfer, 30: 2171-2187, 1987.
  • [4] P. Cheng, C.T. Hsu, A. Chowdhury. Forced convection in the entrance region of a packed channel with asymmetric heating. ASME Journal of Heat Transfer, 110: 946-954, 1988.
  • [5] R.C. Givler, S.A. Altobelli. A determination of the effective viscosity for the Brinkman-Forchheimer flow model. Journal of Fluid Mechanics, 258: 355-370, 1994.
  • [6] A. Hadim. Forced convection in a porous channel with localized heat sources. ASME Journal of Heat Transfer, 116: 465-472, 1994.
  • [7] P.C. Huang, K. Vafai. Flow and heat transfer control over an external surface using a porous block arrangement. International Journal of Heat and Mass Transfer, 36: 4019-4032.
  • [8] M. Kaviany. Laminar flow through a porous channel bounded by isothermal parallel plates. International Journal of Heat and Mass Transfer, 28: 851-858, 1985.
  • [9] S.J. Kim , C.Y. Choi. Convective heat transfer in porous and overlying fluid layers heated from below. International Journal of Heat and Mass Transfer, 39: 319-329, 1993.
  • [10] A.V. Kuznetsov. Analytical study of fluid flow and heat transfer during forced convection in a composite channel partly filled with a Brinkman-Forchheimer porous medium. Flow, Turbulence and Combustion, 60: 173-192, 1998.
  • [11] A.V. Kuznetsov, M. Xiong. On the limitations of the single-domain approach for computation of convection in composite channels - Comparisons with exact solutions. Hybrid Methods in Engineering, 1: 249-264, 1999.
  • [12] N. Martys, D.P. Bentz, E.J. Garboczi. Computer simulation study of the effective viscosity in Brinkman's equation. Phys. Fluids, 6: 1434-1439, 1994.
  • [13] A. Nakayama, H. Koyama, F. Kuwahara. An analysis on forced convection in a channel filled with a Brinkman­Darcy porous medium: Exact and approximate solutions. Wärme- und Stoffübertragung, 23: 291-295, 1988.
  • [14] D.A . Nield. The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. International Journal of Heat and Fluid Flow, 12: 269-272, 1991.
  • [15) D.A. Nield, S.L.M. Junqueira, J.L. Lage. Forced convection in a fluid saturated porous medium channel with isothermal or isoflux boundaries. Journal of Fluid Mechanics, 322: 201-214, 1996.
  • [16] J.A. Ochoa-Tapia, S. Whitaker. Momentum transfer at the boundary between a porous medium and a homogeneous fluid - I. Theoretical development. International Journal of Heat and Mass Transfer, 38: 2635-2646, 1995.
  • [17] J.A. Ochoa-Tapia, S. Whitaker. Momentum transfer at the boundary between a porous medium and a homogeneous fluid - II. Comparison with experiment. International Journal of Heat and Mass Transfer, 38: 2647-2655, 1995.
  • [18] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, 1980.
  • [19) M.C. Schneider, C. Beckermann. A numerical study of the combined effects of microsegregation, mushy zone permeability and flow, caused by volume contraction and thermosolutal convection, on macrosegregation and eutectic formation in binary alloy solidification. Int. J. Heat Mass Transfer, 38: 3455-3473, 1995.
  • [20] K. Vafai, S.J. Kim. Analysis of surface enhancement by a porous substrate. ASME Journal of Heat Transfer, 112: 700-706, 1990.
  • [21] V.R. Voller, C. Prakash. A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems. Int. J. Heat Mass Transfer, 30: 1709-1719, 1987.
  • [22] H. Yoo, R. Viskanta. Effect of anisotropic permeability on the transport process during solidification of a binary mixture. Int. J. Heat Mass Transfer, 35: 2335-2346, 1992.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0009-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.