Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | Vol. 7, No. 4 | 479-492
Tytuł artykułu

Adaptive solution of problems modeled by unified state variable constitutive equations

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Polish Conference on Computer methods in mechanics ; (14 ; 26-28.05.1999 ; Rzeszów, Poland)
Języki publikacji
EN
Abstrakty
EN
The objective of the work was an efficient, numerical implementation of one of the unified, internal-state-variable constitutive models. Such models are general and convenient in numerical applications since they describe elastic, plastic, viscous, damage phenomena and they do not require neither yielding condition nor loading/unloading criterion. However, they result in so called stiff initial-boundary value problems. Therefore, an efficient numerical implementation demand adaptive techniques, both in space and in time. The paper presents application of such an adaptation approach. It uses an improved version of the semi-implicit Euler method with automatic time step control and the h refinement of the FEM meshes based on the interpolation error estimate and on the reliable, selfequilibrated, implicit, a posteriori estimate. Selected problems were solved and both the efficiency and reliability of the unified model were confirmed.
Wydawca

Rocznik
Strony
479-492
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
  • Cracow University of Technology [Politechnika Krakowska], ul. Warszawska 24, 31-155 Cracow, Poland
  • Cracow University of Technology [Politechnika Krakowska], ul. Warszawska 24, 31-155 Cracow, Poland
Bibliografia
  • [1] M. Ainsworth, T. J. Oden. A unified approach to a posteriori error estimation using element residual methods. Numer. Math., 65: 23-50, 1993.
  • [2] I. Babuska, T. Strouboulis, C.S. Upadhyay. A model study of the quality of a posteriori error estimators for linear elliptic problems. Comp. Meth. Appl. Mech. Engng., 114: 307-378, 1994.
  • [3] J. M. Bass, J. T. Oden. Adaptive finite element methods for a class of evolution problems in viscoplasticity. J. Engng. Sci., 25: 623-653, 1987.
  • [4] M. A. Biot. Theory of stress-strain relations in anisotropiic viscoelasticity and relaxation phenomenon. J. Appl. Phys., 25: 1385-1391, 1954.
  • [5] S. R. Bodner. Review of a unified elasto-viscoplastic theory. In: A.K. Mille, ed., Unified Constitutive Equations for Plastic Deformation and Creep of Engineering Alloys. Elsevier and Applied Science, London, 1985.
  • [6] W. Cecot. On numerical integration of unified elastic-visco-plastic constitutive models. Proc. of the XIII Polish Conf. of Computer Methods in Mechanics, Poznań (Poland) 1997, 241-246.
  • [7] L. Demkowicz, J. T. Oden, W. Rachowicz, O. Hardy. Toward a universal h-p adaptive finite element strategy, Part 1. Constrained approximation and data structure. Comp. Meth. Appl. Mech. Engng., 77: 79-112, 1989.
  • [8] L. Demkowicz, W. Rachowicz, K. Bazia, J. Kucwaj. 2-D hp Adaptive Package. Cracow University of Technology, Section of Applied Mathematics, Report 4/1992, Cracow, 1992.
  • [9] A. D. Freed, K. P. Walker. Refinements in a viscoplastic model, Winter Annual Meeting of ASME, San Francisco, CA, 1989.
  • [10] E. Krempl. Modeling of high homologous temperature deformation Behavior using the viscoplasticity theory based on overstress (VB0): Part I, II, III. Joru. Engng. Mat. Tech., 119, 1997.
  • [11] J. Krok. A posteriori error estimation and FEM mesh density in plasticity and visco-plasticity. XIV Polish Conf. on Computer Methods in Mechanics, Rzeszow, Poland, 1999.
  • [12] V. Kumar, M. Morjaria, S. Mukherjee. Numerical integration of some stiff constitutive models of inelastic deformation. Trans. ASME, 102: 92-96, 1980.
  • [13] U. S. Lindholm et al. Constitutive Modeling for Isotropic Materials. NASA rep. CR-174980, 1985.
  • [14] J. Meixner. Thermodynamische theorie der elastischen relaxation. Zeitschr. Naturforschung, 9a: 654-665, 1954.
  • [15] J. T. Oden, G. F. Carey. Finite Elements, Mathematical Aspects, vol. IV. Prentice Hall Inc., London, 1983.
  • [16] P. Perzyna. Thermodynamics of Nonelastic Materials. PWN, Warszawa, 1978.
  • [17] W. H. Press et al. Numerical Recipes. Cambridge University Press, Cambridge, MA, 1992.
  • [18] P. E. Senseny, N.S. Brodsky, K.L. Devries. Parameter evaluation for a unified constitutive model. J. of Engng. Materials and Technology 115: 157-162, 1993.
  • [19] J. Stoer, R. Bulirsh. Introduction to Numerical Analysis. Springer-Verlag, New York, 1980.
  • [20] J. B. Min, W. W. Tworzydło, K. E. Xiques. Adaptive finite element methods for continuum damage modeling. Comp. Struct., 58: 887-900, 1995.
  • [21] W. Tworzydło, W. Cecot, J. T. Oden, C. H. Yew. Computational micro- and macroscopic models of contact and friction: formulation, approach, and applications. Wear, 220: 113-140, 1998.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0005-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.