Czasopismo
2000
|
Vol. 7, No. 3
|
307-320
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
A finite element model has been developed for the computation of melting/solidifying process under the combined action of buoyancy and surface tension forces. Validated on the square cavity benchmark of Gobin and Le Quéré (Bertrand et al. [1], Gobin and Le Quéré [2]), the numerical model is used to extend this previous analysis to the free surface case where surface tension can drive the flow (capillary flow). A comparison of the results obtained for three types of boundary conditions applied at the top of the melting pool is performed. It shows that in the studied case of tin where the thermal Bond number is moderated (Bo=200), the flow is still mainly dominated by buoyancy effect as long as the melted pool is deep enough like in the square cavity case of the above mentioned benchmark.
Rocznik
Tom
Strony
307-320
Opis fizyczny
Bibliogr 49 poz., rys., wykr.
Twórcy
autor
- IUSTI-CNRS UMR 6595, Université de Provence, Technopôle de Château-Gombert, 5 rue Enrico Fermi, 13453 Marseille Cedex 13, France
autor
- IUSTI-CNRS UMR 6595, Université de Provence, Technopôle de Château-Gombert, 5 rue Enrico Fermi, 13453 Marseille Cedex 13, France
autor
- IUSTI-CNRS UMR 6595, Université de Provence, Technopôle de Château-Gombert, 5 rue Enrico Fermi, 13453 Marseille Cedex 13, France
Bibliografia
- [1] B. Basu, J. Srinivasan. Numerical study of steady-state laser melting problem. Int. J. Heat Mass Transfer, 31(11): 2331-2338, 1988.
- [2] R. F. Bergholtz. Instability of steady natural convection in a vertical lot. J. Fluid Mech., 84: 743-768, 1978.
- [3] 0. Bertrand, B. Binet, H. Combeau, S. Couturier, Y. Delannoy, D. Gobin, M. Lacroix, P. Le Qu6r6, M. Medale, J. Mencinger, H. Sadat, G. Veird. Melting driven by natural convection. A comparison exercise. Int. J. of Therm. Sci., 38: 5-26, 1999.
- [4] A. D. Brent, V. R. Voller, K. J. Reid. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer. Heat Transfer, 13: 297-318, 1988.
- [5] R. A. Brown, T. A. Kinney, P. A. Sackinger, D. E. Bornside. Toward an integrated analysis of Cochralski growth. J. Cryst. Growth, 97: 99-115, 1989.
- [6] B. M. Carpenter, G. M. Homsy. Combined buoyant-thermocapillary flow in a cavity. J. Fluid. Mech., 207: 121-132, 1989.
- [7] C. Chan, J. Mazumder, M. M. Chen. A two-dimensional transient model for convection in laser melted pool. Metali. Trans. A, 15A: 2175-2184, 1984.
- [8] K. C. Chiang, H. L. Tsai. Shrinkage-induced fluid flow and domain change in two-dimensional alloy solidification. Int. J. Heat Mass Transfer, 35: 1763-1770, 1992.
- [9] S. Chippada, T.C. Jue, B. Ramaswamy. Finite-element simulation of combined buoyancy and thermocapillary driven convection in open cavities. Int. J. Num. Meth. Eng., 38: 335, 1995.
- [10] K. A. Cliffe, S. J. Tavener. Marangoni-B6nard convection with a deformable free surface. J. Comp. Phys., 145: 193-227, 1998.
- [11] P. G. Daniels. Transition to the convective regime in a vertical slot. Int. J. Heat Mass Transfer, 28: 2071-2077, 1985.
- [12] P. G. Daniels, P. Wang. Numerical study of thermal convection in tall laterally heated cavities. Int. J. Heat Mass Transfer, 37: 375-386, 1994.
- [13] J. A. Dantzig. Modeling liquid-solid phase changes with melt convection. Int. J. Num. Meth. Eng., 28: 1769-1785, 1989.
- [14] M. C. Fleming. Solidification Processing. McGraw-Hill, New York, 1974.
- [15] C. Gau, R. Viskanta. Melting and solidification of a pure metal on a vertical wall. J. Heat Transfer, 108: 174-181, 1986.
- [16] D. Gobin, C. Benard. Melting of metals driven by natural convection in the melt: influence of the Prandtl and Rayleigh numbers. J. Heat Transfer, 114: 521-524, 1992.
- [17] D. Gobin, P. Le Qućrć. Melting in enclosures: Coupled heat transfer and natural convection. In: Kowalewski, Stella, Banaszek, Szmyd, eds., ESP-AMIF Workshop on Phase Change with Convection, Modeling and Validation, 13-18, 1999.
- [18] G. Gousbet, J. Maquet, C. Roze, R. Darrigo. Surface tension and coupled buoyancy-driven instability in a horizontal liquid layer: overstability and exchange of stability. Phys. Fluids A, 2(6): 903-911, 1990.
- [19] P. M. Gresho, R. L. Sani. Incompressible flow and the finite element method - Advection-diffusion and isothermal laminar flow. John Wiley and Sons, Chichester, 1998.
- [20] B. H. Hadid, B. Roux. Buoyancy- and thermocapillary-driven flows in a shallow open cavity: unsteady flow regimes. J. Cryst. Growth, 97: 217-225, 1989.
- [21] Y. F. Hsu, B. Rubinsky. Two-dimensional heat transfer study on the keyhole plasma arc welding process. Int. J. Heat Mass Transfer, 31(7): 1409-1421, 1988.
- [22] A. D. W. Jones. Hydrodynamics of Czochralski growth - a review of the effects of rotation and buoyancy forces. Prog. Cryst. Growth Charact., 9: 139-168, 1984.
- [23] Y. Katsumura, H. Hashizume, S. Toda. Numerical analysis of fluid flow with free surface and phase change under electromagnetic force. IEEE Trans. Magnetics, 32(3): 1002-1005, 1996.
- [24] R. G. Keanini, B. Rubinsky. Three-dimensional simulation of the plasma arc welding process. Int. J. Heat Mass Transfer, 36(13): 3283-3298, 1993.
- [25] A. G. Kirdyashkin. Thermogravitational and thermocapillary flows in a horizontal liquid layer under the conditions of a horizontal temperature gradient. Int. J. Heat Mass Transfer, 27(8): 1205-1218, 1984.
- [26] N. Kobayashi. Hydrodynamics in Czochralski growth-computer analysis and experiments. J. Crystal Growth, 52: 425-434, 1981.
- [27] S. Kou, Y. H. Wang. Weld pool convection and its effect. Welding Research Supplement, 63-s-70-s 1986,.
- [28] C. W. Lan, S. Kou. Thermocapillary flow and natural convection in a melt column with an unknown melt/solid interface. Int. J. Num. Meth. Fluids, 12: 59-80, 1991.
- [29] A. Liu, T. E. Voth, T. L. Bergman. Pure material melting and solidification with liquid phase buoyancy and surface tension forces. Int. J. Heat Mass Transfer, 36(2): 411-422, 1993.
- [30] M. A. McClelland. Time-dependent liquid metal flows with free convection and a deformable free surface. Int. J. Num. Meth. Fluids, 20: 603-620, 1995.
- [31] M. Medale, M. Jaeger. Mod6lisation par 616ments finis d'6coulements surface libre avec changement de phase solide-liquide. Int. J. Therm. Sci., 38: 267-276, 1999.
- [32] G. M. Oreper, J. Szekely. Heat- and fluid-flow phenomena in weld pools. J. Fluid Mech., 147: 53-79, 1984.
- [33] K. Ravindran, J. Srinivasan, A. G. Marathe. Finite element study on the role of convection in laser surface melting. Numer. Heat Transfer Part A, 26: 601-618, 1994.
- [34] A. A. Samarskii, P. N. Vabishchevich, O.P. Iliev, A. G. Churbanov. Numerical simulation of convection/diffusion phase change problems - a review. Int. J. Heat Mass Transfer, 36(17): 4095-4106, 1993.
- [35] G. P. Sasmal, J. I. Hochstein. Marangoni convection with a curved and deforming free-surface in a cavity. J. Fluids Eng., 116: 577-588, 1994.
- [36] D. Schwabe. Marangoni effects in crystal growth metals. Phys.-Chem. Hydro., 2: 263-280, 1981.
- [37] W. Shyy, M.-H. Chen. A study of the transport process of buoyancy-induced and thermocapillary flow of molten alloy. Comp. Meth. Applied Mech. Eng., 105: 333-358, 1993.
- [38] J. Stefan. Ober die Theorie des Eisbildung, insbesonder fiber die Eisbildung im Polarmeere. J. Ann. Phys. Chem., 42: 269-286, 1891,.
- [39] M. Storti, L. A. Crivelli, S. Idelsohn. An efficient tangent scheme for solving phase-change problems. Comp. Meth. Applied Mech. Eng., 66: 65-86, 1988.
- [40] M. C. Tsai, S. Kou. Marangoni convection in weld pools with a free surface. Int. J. Num. Meth. Fluids, 9: 1503-1516, 1989.
- [41] D. Villers, J. K. Flatten. Separation of Marangoni convection from gravitational convection in earth experiments. PhysicoChem. Hydrodynam., 8(2): 173-183, 1987.
- [42] D. Villers, J. K. Platten. Coupled buoyancy and Marangoni convection in acetone: experiments and comparison with numerical simulations. J. Fluid. Mech., 234: 487-510, 1992.
- [43] R. Viskanta. Natural convection in melting and solidification. In: S. Kakac, W. Aung, R. Viskanta, eds., Natural convection; fundamentals and applications. Hemisphere, New York, 845-877, 1985.
- [44] V. R. Voller. Fast implicit finite-difference method for the analysis of phase change problems. Numer. Heat Transfer Part B, 17: 155-169, 1990.
- [45] V. R. Voller. An overview of numerical methods for solving phase change problems. Adv. Num. Heat Transfer, Vol. 1, 341-380. Taylor and Francis, 1997.
- [46] V. R. Voller, C. Prakash. A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems. Int. J. Heat Mass Transfer, 30(8): 1709-1719, 1987.
- [47] V. R. Voller, S. Sundarraj. A model of inverse segregation: the role of microporosity. Int. J. Heat Mass Transfer, 38(6): 1009-1018, 1995.
- [48] V. R. Voller, C. R. Swaminathan, B. G. Thomas. Fixed grid techniques for phase change problems: a review. Int. J. Num. Meth. Eng., 30: 875-898, 1990.
- [49] T. Zacharia, S. A. David, J. M. Vitek. Effect of convection on weld pool development. In: M.J. Cieślak, J. H. Perepeczko, S. Kang, M. E. Glicksman, eds., The Metal Science of Joining, 257-263. The Minerals Metals and Materials Society, 1992.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0005-0004