Czasopismo
2000
|
Vol. 7, No. 1
|
39-52
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In the paper some results of investigations of two intelligent information systems: a feedforward neural network and an adaptive fuzzy expert system, are presented. The systems can be used for example in approximation and control problems or in diagnostics. The adaptive fuzzy expert system is constructed as a hybrid in which a fuzzy inference system is combined with a neural network. In the learning process for given set of training points an optimal value of the so-called generalized weight vector is searched. The Lapunov theory is used to examine the non-sensitivity of the optimal value of a generalized weight vector to initial conditions and training data. Some necessary and sufficient conditions are formulated in terms of the Hessian matrix of the error function.
Rocznik
Tom
Strony
39-52
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
autor
- Polish Academy of Sciences, Institute of Fundamental Technological Research [Polska Akademia Nauk, Instytut Podstawowych Problemów Techniki], ul. Świętokrzyska 21, 00-049 Warsaw, Poland
autor
- Polish Academy of Sciences, Institute of Fundamental Technological Research [Polska Akademia Nauk, Instytut Podstawowych Problemów Techniki], ul. Świętokrzyska 21, 00-049 Warsaw, Poland
Bibliografia
- [1] L. Bolc and M.J. Coombos, eds. Expert System Applications. Springer-Verlag, 1988.
- [2] J. Buckley, Y. Hayashi, and E. Czogala. On the equivalence of neural nets and fuzzy expert systems. Fuzzy Sets and Systems, North-Holland, 53: 129-134, 1993.
- [3] P.M. Prank. Introduction to System Sensitivity Theory. Academic Press, New York, 1978.
- [4] P. Gołąbek, W. Kosiński and M. Weigl. Adaptation of learning rate via adaptation of weight vector in modified M-Delta networks. In: P.S. Szczepaniak (ed.), Computational Intelligence and Applications, (Studies in Fuzziness and Soft Computing, Vol. 23), 156-163. Physica-Verlag, c/o Springer-Verlag, 1999.
- [5] P. Gołąbek, W. Kosiński, A. Januszewska and M. Kubacka. Numerical experiments with an NM-Delta adaptation algorithm for neural network. Under preparation, 1999.
- [6] Ph. Hartman. Ordinary Differential Equations. J. Wiley, New York-London-Sydney, 1964.
- [7] J. Jang. ANFIS: Adaptive-Network-Based Fuzzy Inference System. Technical report, University of California, Berkeley, 1993.
- [8] W. Kosiński and M. Weigl. General mapping approximation problems solving by neural networks and fuzzy inference systems. Systems Analysis Modelling Simulation, 30(1): 1998, 11-28.
- [9] L. Medsker. Hybrid Neural Network and Expert Systems. Kluwer Academic Publishers, Boston-Dordrecht-London, 1994.
- [10] B. Pol'ak. Introduction to Optimization (in Russian). Nauka, Moscow, 1983.
- [11] M. Weigl. Neural Networks and Fuzzy Inference Systems in Approximation Problems (in Polish). Ph.D. Thesis, June 1995.
- [12] M. Weigl and W. Kosiński. Fuzzy inference system and modified back—propagation network in approximation problems. In: Proceedings of the III-rd International Symposium on Intelligent Information Systems, June 1994, Wigry n. Suwalki, 427-442. IPI PAN, Warszawa, 1994.
- [13] M. Weigl and W. Kosiński. A neural network system for approximation and its implementation. In: Proceedings of the First National Conference on Neural Networks and their Applications, April 1994, Kule n. Częstochowa, 485-491. Politechnika Częstochowska, 1994.
- [14] M. Weigl and W. Kosiński. Fuzzy reasoning in adaptive expert systems for approximation problems. In: Proceedings of the 3-th Zittau Fuzzy - Colloquy Zittau, September 5-6, 1995, 163-174. Wissenschaftliche Berichte, Heft 41, 1995.
- [15] L. Zadeh. The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets and Systems, 11: 199-226, 1983.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0003-0082