Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 25, nr 2 | 51-56
Tytuł artykułu

Model of heat flow during crystallization of cast composites

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this work was to show possibilities of numerical simulation software, based on heat transfer model, commonly used in foundry industry in cast composite properties engineering. Design/methodology/approach: The main restriction in most of used software systems is lack of heat transfer, which may occur at composite creation. In this work the reinforcing particle morphology an size were expressed by one quantity - morphological modulus Mm and were examined for influence on heat transfer and conductivity up to the Newton's and Fourier's laws. Findings: The main restrictions for using Fourier's model based software for composite engineering are shown. The way for crystallization control was presented including influence of morphology, transition zone and thermo-physical properties of components. Research limitations/implications: Proposed methodology can be used for cast composite properties engineering in cases, where relative motion of components is negligible. In other cases heat transfer coefficient is justified only if the software used is based on Fourier's model and the source code is accessible. Originality/value: Proposed assumptions create possibility for components selection verification in terms of technological and operating properties of cast composite. An example of such approach was shown in work.
Wydawca

Rocznik
Strony
51-56
Opis fizyczny
Bibliogr. 23 poz., tab.
Twórcy
autor
  • Division of Foundry, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland, miroslaw.cholewa@polsl.pl
Bibliografia
  • [1] M. Cholewa, Simulation of solidification process for composite micro region with incomplete wetting of reinforcing particles, Proceedings of the 13th International Scientific Conference "Achievements in Mechanical and Materials Engineering" AMME'2005, Gliwice, 2005, 67.
  • [2] S. Pawłowski, S. Serkowski, Fireproof materials for metallurgical applications, No. 1892/I (1995) (in Polish).
  • [3] Simulation software CasTech, Scientific works of Silesian University of Technology, Gliwice, 1999.
  • [4] Z. Poniewierski, Crystallization, structure and properties of AlSi alloys, WNT, Warsaw, 1989 (in Polish).
  • [5] S. Pietrowski, AlSi alloys, Łódź University of Technology Publ., Łódź, 2001 (in Polish).
  • [6] M. Cholewa, J. Gawroński, PN Patent no. P-335 033, 1999.
  • [7] E. Fraś, Theoretical fundamentals of crystallization, AGH Publ., Kraków, 1984 (in Polish).
  • [8] A. Ohno, Solidification of metals, Metallurgy, Moscow, 1980 (in Russian).
  • [9] M. Cholewa, Correlation between thermal-geometrical properties of reinforcement in dispersive composites, Solidification of Metals and Alloys 2/44 (2000) 65-69 (in Polish).
  • [10] J. Składzień, Thermokinetics and thermodynamics, Silesian University of Technology Publ., Gliwice, 1985 (in Polish).
  • [11] S. Wiśniewski, Heat transfer, PWN, Warsaw, 1998 (in Polish).
  • [12] Z. Ignaszak, P. Mikołajczak, Archive of Machines Engineering and Automation, 18 (1998) 163 (in Polish).
  • [13] W. Kapturkiewicz, Modeling of cast iron castings crystallization, Akapit, Cracow, 2003 (in Polish).
  • [14] Z. Ignaszak, Validation of virtual engineering systems applied in foundry industry, Proceedings of the Report Conference of Steel Industry Committee of PAN, Krynica, 2002 (in Polish).
  • [15] D.M. Stefanescu, H. Pang, Modeling of casting solidification stochastic or deterministic? Canadian Metallurgical Quarterly 37/3 (1998) 229-239.
  • [16] R. Sasikumar, R. Sreenivasan, Two dimensional simulation of dendrite morphology, Acta Metallurgica et Materialia 42/7 (1994) 2381-2386.
  • [17] P. Thevoz, J.L. Desboilles, M. Rappaz, Modeling of equiaxed microstructure formation in casting, Metallurgical Transactions 20A (1989) 311-322.
  • [18] W. Kapturkiewicz, Model and numerical simulation of casting crystallization, Publishing of the Academy of Mining and Metallurgy, 109, 10.
  • [19] CA. Gandin, M. Rappaz, A Coupled Finite Element - Cellular Automaton Model for the Prediction of Dendritic Grain Structures in Solidification Processes, Acta Metallurgica et Materialia 42 (1994) 2233-2246.
  • [20] P. Thevoz, M. Gaumann, M. Gremaud, The Numerical Simulation of Continuous and Investment Casting, Journal of Metals 1 (2002).
  • [21] C.A. Gandin, M. Rappaz, A Coupled Finite Element - Cellular Automaton Model for the Prediction of Dendritic Grain Structures in Solidification Processes, Acta Metallurgica et Materialia 42 (1994) 2233-2246.
  • [22] P. Thevoz, M. Gaumann, M. Gremaud, The Numerical Simulation of Continuous and Investment Casting, Journal of Metals 1 (2002).
  • [23] M. Cholewa, Solidification kinetics of dispersive composites, Scientific works of Silesian University of Technology 151 (2005) (in Polish).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0021-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.