Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 24, nr 1 | 26-35
Tytuł artykułu

FMR study of magnetic nanoparticles embedded in non-magnetic matrix

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this review is recapitulating the FMR study of low concentration of magnetic nanoparticles in non-magnetic matrices. Design/methodology/approach: Magnetic nanoparticles exhibit a variety of anomalous magnetic properties and they could be used for forming low concentration in different matrices. This way, they are being found to be allowing for effectively novel applications of FMR (ferromagnetic resonance) for easier trustworthy characterisation of a variety of materials. alpha-Fe, Co, Fe3C, gamma- Fe203, Fe3O4 magnetic nanoparticles have been used as low concentration fillers in paraffin, concrete, resin and polymers/copolymers. Findings: For all these matrices, the intensities of the FMR spectra are recorded decreasing with temperature lowering in the high temperature region, whilst the resonance locus is shifted to the direction of lower magnetic field, essentially changing the resonance condition. These parameters of the FMR spectra are seen depending upon kind of a nanoparticle host in such a way that this method could be useful for studying dynamical processes of the matrices. Interestingly enough, a very low concentration of magnetic nanoparticles embedded in the non-magnetic matrix could modify its glass-state emanation or melting transition. Research limitations/implications: Composite systems containing magnetic nanoparticles promise the potential for high-density data storage, biomedical applications, catalysis, and nanotechnology sensor materialisation among other envisaged utilisations. Originality/value: Continue attempting to decipher the mystery and fruitfulness of magnetic nanoparticle distributions.
Wydawca

Rocznik
Strony
26-35
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
autor
  • Solid State Section, Department of Physics, University of Athens, Panepistimiopolis, 15 784 Zografos, Athens, Greece, ngouskos@phys.uoa.gr
Bibliografia
  • [1] D.E. Speliotis, Magnetic recording beyond the first 100 Years, Journal of Magnetism and Magnetic Materials 193 (1999) 29-35.
  • [2] Yu.A. Koksharov, S.P. Gubin, I.D. Kosobudsky, G.Yu. Yurkov, D.A. Pankratov, L.A. Ponomarenko, M.G. Mikheev, M. Beltran, Y. Khodorkovsky, A.M. Tishin, Electron paramagnetic resonance spectra near the spin-glass transition in iron oxide nanoparticles, Physical Review B 63 (2000) 012407.
  • [3] E. Troc, A. Ezzir, R. Cherkaoui, C. Chaneac, M. Nogues, H. Kachkachi, D. Fiorani, A.M. Testa, J.M. Greneche, J.P. Jolivet, Surface-related properties of γ-Fe203 nanoparticles, Journal of Magnetism and Magnetic Materials 221 (2000) 63-79.
  • [4] R. Berger, J.C. Bissey, J. Klava, H. Daubric, C. Estournes, Temperature dependence of superparamagnetic resonance of iron oxide nanoparticles, Journal of Magnetism and Magnetic Materials 234 (2001) 535-544.
  • [5] Yu.A. Koksharov, D.A. Pankratov, S.P. Gubin, I.D. Kosobudsky, M. Beltran, Y. Khodorkovsky, A.M. Tishin, Electron paramagnetic resonance of ferrite nanoparticles, Journal of Applied Physics 89 (2001) 2293-2298.
  • [6] X. Chen, W. Kleemann, O. Petracic, O. Sichelschmidt, S. Cardoso, P.P. Freitas, Relaxation and aging of a superferromagnetic domain state, Physica Review B68 (2003) 054433.
  • [7] C.T. Hsieh, J.T. Lue, Electron spin resonance studies on quantum tunneling in spinel ferrite nanoparticles, European Physica Journal B35 (2003) 357-364.
  • [8] J.L. Wilson, P. Poddar, N.A. Frey, K. Mohomed, J.P. Harmon, S. Kotha, J. Wachsmuth, Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles, Journal of Applied Physics 95 (2003) 1439-1443.
  • [9] Y. Xiaotun, X. Lingge, N.S. Choon, C.S.O. Hardy, Magnetic and electrical properties of polypyrrole-coated γ-Fe203 nanocomposite particles, Nanotechnology 14 (2003) 624-629.
  • [10] U. Narkiewicz, N. Guskos, W. Arabczyk, J. Typek, T. Bodziony, W. Konicki, G. Gąsiorek, I. Kucharewicz, E.A. Anagnostakis, TEM and magnetic resonance studies of iron carbide nanoparticle aggiomerates in carbon matrix, Carbon 42/5-6 (2004) 1127-1132.
  • [11] P. Dutta, A. Manivannan, M.S. Sechra, N. Shah, G.P. Huffman, Magnetic properties of nearly defect-free maghemite nanocrystals, Physica Review B 70 (2004) 174428.
  • [12] N. Guskos, E.A. Anagnostakis, V.Likodimos, J. Typek, U. Narkiewicz, Ferromagnetic resonance and ac conductivity of a polymer composite of Fe3O4 and Fe3C nanoparticles dispersed in a graphite matrix, Journal of Applied Physic 97 (2005) 0204304.
  • [13] N. Guskos, J. Typek, M. Maryniak, Z. Roslaniec, D. Petridis, M. Kwiatkowska, FMR Study of γ-Fe203 magnetic nanoparticles in a multiblock poly(ether-ester) copolymer matrix, Materials Science 23 (2005) 971.
  • [14] N. Guskos, V. Likodimos, S. Glenis, J. Typek, M. Maryniak, Z. Roslaniec, M. Baran, R. Szymczak, D. Petridis, M. Kwiatkowska, Matrix effects on the magnetic properties of γ-Fe203 nanoparticles dispersed in a multiblock copolymer, Journal of Applied Physic 99 (2006) 084307.
  • [15] N. Guskos, E.A. Anagnostakis, G. Gasiorek, J. Typek T. Bodzionny, U. Narkiewicz, W. Arabczyk, W. Konicki, Molecul Physica Reports 39 (2004) 58.
  • [16] N. Guskos, J. Typek, U. Narkiewicz, M. Maryniak, K. Aidinis, Temperature Dependence of the FMR Spectrum of Magnetic Nanoparticle Agglomarates in Nonmagnetic Matrix, Review of Advanced Materials Science 8 (2004) 10-15.
  • [17] T. Bodziony, N. Guskos, J. Typek, Z. Roslaniec, U. Narkiewicz, M. Maryniak, Ferromagnetic Resonance Study of Fe3O4 and Fe3C Magnetic Nanoparticle Mixture filling the PTMO - block - PET Polyme, Review of Advanced Materials Science 8 (2004) 86-91.
  • [18] T. Bodziony, N. Guskos, Z. Roslaniec, U. Narkiewicz, M. Kwiatkowska, M. Maryniak, Low Concentration Effect of Fe3O4 and Fe3C Magnetic Nanoparticles in Non-Magnetic Matrix on the FMR Spectra, Acta Physica Polonica A 108 (2005) 297.
  • [19] N. Guskos, J. Typek, M. Maryniak, U. Narkiewicz, I. Kucharewicz, R. Wrobel, FMR study of agglomerated nanoparticles in a Fe3 C/C system, Materials Science 23 (2005) 1001.
  • [20] T. Bodziony, N. Guskos, J. Typek, Z. Roslaniec, U. Narkiewicz, M. Maryniak, Temperature dependence of the FMR spectra of Fe3O4 and Fe3C nanoparticle magnetic systems in copolymers matrices, Materials Science 23 (2005) 1055.
  • [21] N. Guskos, J. Typek, M. Maryniak, U. Narkiewicz, W. Arabczyk, I. Kucharewicz, Temperature dependence of FMR spectrum of Fe3C magnetic agglomerates, Journal of Physics: Conference Series 10 (2005) 151-154.
  • [22] N. Guskos, J. Typek, T. Bodziony, Z. Roslaniec, U. Narkiewicz, M. Kwiatkowska, M. Maryniak, Temperature Dependence of FMR Field of Magnetic Nanoparticles/Polymer Composite Review of Advanced Materials Science 12 (2006) 133-138.
  • [23] M. Maryniak, N. Guskos, J. Typek, I. Kucharewicz, U. Narkiewicz, Z. Roslaniec, M. Kwiatkowska, W. Arabczyk, K. Adinis, FMR Study of Polymer Composites with Nanocrystalline Iron-Carbon Fillers, Review of Advanced Materials Science 12 (2006) 200-205.
  • [24] U. Narkiewicz, W. Arabczyk, I. Pełech, N. Guskos, J. Typek, M. Maryniak, M.J.Wozniak, H. Matysiak, K.J. Kurzydlowski, FMR study of nanocarbon materials obtained by carburization of nanocrystalline iron, Materials Science-Poland 24 (2006) 1067.
  • [25] N. Guskos, M. Maryniak, J. Typek, I. Pełech, U. Narkiewicz, Z. Rosłaniec, M. Kwiatkowska, Temperature Dependence c the FMR Spectra of Polymer Composites with Nanocrystalline -Fe/C filler, Solid State Phenomena (2007).
  • [26] N. Guskos, J. Typek, M. Maryniak, Z. Roslaniec, D. Petridis, M. Kwiatkowska, FMR study of γ-Fe2O3 magnetic nanoparticles in a multiblock poly(ether-ester) copolymer matrix, Materials Science 23 (2005) 972.
  • [27] N. Guskos, J. Typek, M. Maryniak, Z. Roslaniec, M. Kwiatkowska, D. Petridis, FMR study of gamma-Fe2O3 magnetic nanoparticles in a multiblock poly(ether-ester) copolymer matrix, Journal of Non-Crystalline Solid 352 (2006) 971-976.
  • [28] N. Guskos, J. Typek, M. Maryniak, FMR line shift for γ-Fe2O3 magnetic nanoparticles embedded in a nonmagnetic matrix, Physica Status Solidi B 244 (2007) 859-865.
  • [29] N. Guskos, J. Typek, M. Maryniak, A. Guskos, Z. Roslaniec, D. Petridis, E. Sanderek, FMR Study of γ-Fe2O3 Magnetic Nanoparticles Embedded in a Poly(Ether-Ester) Multiblock Copolymers (Pen-block-PTMO) and (PTT-block-PTMO), Review of Advanced Materials Science 14 (2007) 157-162.
  • [30] N.Guskos, G.Zolnierkiewicz, J.Typek, A.Guskos, Z.Czech, FMR Study of γ-Fe2O3 Agglomerated Nanoparticles Dispersed in Glues, Review of Advanced Materials Science 14 (2007) 57-60.
  • [31] N. Guskos, V. Likodimos, S. Glenis, M. Maryniak, M. Baran, R. Szymczak, Z. Roslaniec, M. Kwiatkowska, D. Petridis, Journal of Applied Physic 99 (2006) 084307.
  • [32] A.B. Bourlinos, A. Simopoulos, D. Petridis, Synthesis of capped ultrafine gamma -Fe203 particles from iron(III) hydroxide caprylate: a novel starting material for readily attainable organosols, ChemicaMaterialia 14 (2002) 899-903.
  • [33] M. Sobon, I.E. Lipinski, A. Guskos, J. Typek, K. Aidinis, N. Guskos, U. Narkiewicz, M. Podsiadly, FMR Study of Carbon Coated Cobalt Nanoparticles Dispersed in Parafin, Review of Advanced Materials Science 14 (2007) 11-16.
  • [34] N. Guskos, M. Sobon, A. Guskos, J. Typek, I.E. Lipiński, K. Aidinis, J. Blyszko, W. Kiernozycki, U. Narkiewicz, M. Podsiadly, Ageing Effect in Carbon-coated Cobalt Nanoparticles Embedded in a Cement Matrix Studied by FMR, Review of Advanced Materials Science 14 (2007) 130-134.
  • [35] N. Guskos, J. Typek, M. Maryniak, G. Zolnierkiewicz, M. Podsiadly, W. Arabczyk, Z. Lendzion-Bieluń, U. Narkiewicz, Effect of calcination and structural additives on the ERP spectra of nanocrystalline cobalt oxides, Materials Science 24 (2006) 1095.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0019-0098
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.