Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 20, nr 1-2 | 37-44
Tytuł artykułu

Abrasive and erosive wear resistance of GMA metal cored wire cermetal deposits

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
12th International Scientific Conference CAM3S'2006, 27-30th November 2006, Gliwice-Zakopane
Języki publikacji
EN
Abstrakty
EN
Purpose: Purpose of these researches was to determine influence of GMA metal cored wire surfacing parameters on the abrasive and erosive wear resistance of the one layer and three layer weave bead cermetal deposits. Design/methodology/approach: One layer and three layer wave bead deposits were GMA surfaced using metal cored wire (nickel based - 54%WC) 1.6 [mm] dia. To determine quality of deposits Visual Inspection, MT examinations, hardness HRC and HV10 measurements on the ground surface of deposits, macrostructure and microstructure observations, abrasive and erosion wear resistance tests were done. Findings: Hardness of deposits tested is in the range from 453-517 HV 10(44.5-47.9 HRC) and is a function of the value of heat input of surfacing. WC carbides population density, size and distribution in nickel alloy matrix of deposits tested is a function of GMA heat input of surfacing. Low heat input of surfacing insures uniform distribution of WC carbides on the cross section of deposits. The low heat input GMA surfaced weave bead deposits provide 10 times higher abrasion wear resistance and 4.2 times higher erosion wear resistance than HARDOX 400 steel plate. Research limitations/implications: Results of this paper is to increase quality of GMA cermetal deposits. Originality/value: Hardness of deposits can not be treated as the abrasion and erosion wear resistance indicator.
Wydawca

Rocznik
Strony
37-44
Opis fizyczny
Bibliogr. 20 poz., fot., rys., tab.
Twórcy
autor
autor
Bibliografia
  • [1] G.E. Linnert, Welding Metallurgy Carbon and Alloy Steels. AWS. Miami, Florida, 1994. Ed. 4. Vol.1. Fundamentals. Chapter 6, 628-633. Ed.4. Vol. 2. Technology. Chapter 10. 100-107.
  • [2] Welding Handbook. AWS, Miami, Florida, 1996. Ed. 8. Vol. 4. Materials and Applications. Pt.2. Chapter 7- Surfacing, 391-436.
  • [3] G. Heath, Nanotechnology and welding - actual and possible future applications. CASTOLIN-EUTECTIC SEMINAR, Brussels, Belgium, 25-25.10.2006.
  • [4] A. Klimpel, at al., Robotized GMA surfacing of cermetal deposits. Journal of Achievements in Mechanical and Materials Engineering, 18 (2006) 395-398.
  • [5] Y.I. Oka, K. Okamura, T. Yoshida, Practical estimation of erosion damage caused by solid particle impact. Part 1: Effects of impact parameters on a predictive equation. Wear. 2005, no. 259, 95-101.
  • [6] Y.I. Oka, T. Yoshida, Practical estimation of erosion damage caused by solid particle impact. Part 2: Mechanical properties of materials directly associated with erosion damage. Wear. 2005, no. 259, 102 - 109.
  • [7] J.C. Cassina, I.G. Machado, Low-Stress Sliding Abrasion Resistance of Cobalt-Based Surfacing Deposits Welded with Different Processes, Welding Journal, April, 1992, 133.
  • [8] D.J. Kotecki, J.S. Ogborn, Abrasion resistance of iron-based hardfacing alloys. Welding Journal. 1995, vol.74, no.8, 269-288.
  • [9] I. Sevim, I.B. Eryurek, Effect of abrasive particle size on wear resistance in steels. Materials & Design 2006, 173-181.
  • [10] H. Klaasen, J. Kubarsepp, Abrasive wear performance of carbide composites. Wear. 2006, 520 - 526.
  • [11] M. Divakar, V.K. Agarwal, S.N. Singh, Effect of the material surface hardness on the erosion of AISI 316. Wear. 2005, no. 259, 110-117.
  • [12] G. Sundararajan, R. Manish, Solid particle erosion behaviour of metallic materials at room and elevated temperatures, Tribology International Volume: 30, Issue: 5, 1997, 339-359.
  • [13] Y.I. Oka, H. Ohnogi, T. Hosokawa, M. Matsumura, The impact angle dependence of erosion damage caused by solid particle impact, Wear. Volume: 203-204, March, 1997, 573-579.
  • [14] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, Application of high power diode laser (HPDL) for alloying of X40CrMoV5-l steel surface layer by tungsten carbides, Journal of Material Processing Technology (2004) 155-156.
  • [15] L.A. Dobrzański, M. Bonek, A. Klimpel, A. Lisiecki. Surface layer's structure of X40CrMoV5-l steel remelted and/or WC alloyed with HPDL laser, Materials Science Forum, 3(140), (2003) 69-72.
  • [16] M. Bonek, L.A. Dobrzański, Functional properties of laser modified surface of tool steel, Worldwide Journal of Achievements in Materials and Manufacturing Engineering. 17(2006)313-316.
  • [17] L.A. Dobrzański, M. Bonek, M. Piec, E. Jonda, Diode laser modification of surface gradient layer properties of a hot-work tool steel, Materials Science Forum, Vols. 532-533. Switzerland (2006) 657-660.
  • [18] L.A. Dobrzański, M. Piec, K. Labisz, M. Bonek, A. Lisiecki, Klimpel A.: Laser treatment of surface layer over choosen hot work tool steels, 13th Scientific International Conference "Achievements in Mechanical and Materials Engineering" AMME'2005, Gliwice - Wisła, (2005) 183-186.
  • [19] M. Bonek, L.A. Dobrzański, Functional properties of laser modified surface of tool steel, Worldwide Journal ot Achievements in Materials and Manufacturing Engineering, 17(2006) 313-316.
  • [20] M. Bonek, L.A. Dobrzański, E. Hajduczek, A. Klimpel, Laser modification of surface layer properties of a hot-work tool steel, Worldwide Journal of Achievements in Material and Manufacturing Engineering, 14, (2006) 152-155.
  • 5-0018-0005 : Shielding of electromagnetic fields by mono- and multi-layer fabrics made of metallic glasses with Fe and Co matrix
  • [1] J. Marciniak, The threat of the natural electromagnetic environment, Silesian University of Technology Publication, Gliwice, 2000 (in Polish).
  • [2] J. Marciniak, R. Nowosielski, The protection of the man natural electromagnetic environment, Mechanical Review, 9, 1988, 14-26 (in Polish).
  • [3] IEC Standard 348, Safety requirements for electronic measuring apparatus, Second Ed, Geneve, 1978.
  • [4] L.A. Dobrzański, Metal engineering materials, WNT, Warsaw, 2004 (in Polish).
  • [5] S. Griner, R. Nowosielski, Metallic glasses in form of tapes and fibres in continuous casting methods production, Conf. The modern achievements of materials engineering, PAN, 1992 (in Polish).
  • [6] S. Griner, R. Nowosielski, Technical application of metallic glasses, Conf. The modern achievements of materials engineering, PAN, 1992 (in Polish).
  • [7] D.D. Miszin, Magnetic materials, Izd. WUZ, Moskwa, 1981 (in Russian).
  • [8] A. Charoy, The disturbance in electric devices, WNT. Warszawa, 2000 (in Polish).
  • [9] PN-69/E-02031, Radio engineering industrial disturbances Admissible levels (in Polish).
  • [10] K. Bochenek, The methods of electromagnetic fields analysis, PWN, Warszawa, 1981 (in Polish).
  • [11] B. Keiser, Principles of electromagnetic compatibility, 3-rd Ed., Artech House Inc., Norwood, 1987, 125-163.
  • [12] IEEE, Transaction on electromagnetic compatibility, Special Issue on Shielding, 1988.
  • [13] L.I. Mendelson, S.A. Nasbitt, IEEE Trans. of Magnetic, 1976, 12,924.
  • [14] Feifei Chen, J. Shaoxiong Zhou, Mahnetism and Magnetic Mat. 239, 2002, 595-596.
  • [15] H. Warlimont, Materials Science and Engineering, A304-306, 2001, 61-67.
  • [16] W. Sudzuki, H. Fudzimori, K. Hasimoto, Amorphous materials, Izd. Mietałłurgia, Moskwa, 1987 (in Russian).
  • [17] Vacuumschmelze GMBH Company Folder.
  • [18] P. Hung Quach, C.P. Tals Chui, Cryogenics 44, 2004, 449-455.
  • [19] R. Nowosielski, S. Griner, Attenuation of electromagnetic fields by metallic glasses screens with Fe and Co matrix, Materials Engineering, 1, 1997, 11-17 (in Polish).
  • [20] S. Griner, R. Nowosielski, Attenuation of electromagnetic fields by mono - and multi-layer screens made of Co69Mo2Fe4Si14B11 metallic glasses Proc. 6th Intern. Sci. Conf. AMME'97, Gliwice-Wisła, 1997, 149-154.
  • [21] R. Nowosielski, S. Griner, Attenuation of electromagnetic fields by multi-layer dispositions made of Fe78Si9B13 metallic glasses, Proc. 7th Intern. Sci. Confer. AMME'98, Gliwice, Zakopane, 1998, 381-186.
  • [22] S. Griner, R. Nowosielski, Attenuation of electromagnetic fields by screens made of Co60Ni10Fe5Si11B14 metallic glass, Proc. 8th Intern. Sci. Confer. AMME'99, Gliwice-Rydzyna-Pawłowice-Rokosowo, 1999, 229-232.
  • [23] R. Nowosielski, S. Griner, Influence of electromagnetic fields screen construction features, made of Fe78Si9B13 metallic glass, on its attenuation properties, Proc. 8th Intern. Sci. Confer. AMME’99, Gliwice-Rydzyna-Pawłowice-Rokosowo, 1999,429-432.
  • [24] R. Nowosielski, S. Griner, Attenuation of electromagnetic fields by multi-layer hybrid screens made of metallic glasses, Proc. Sci. Confer. Materials, Mechanical and Manufacturing Engeneering, Gliwice, 2000, 203-208.
  • [25] R. Nowosielski, S. Griner, Attenuation of electromagnetic fields by screens made of Co70.5Fe2,5Mn2Mo1Si9B15 metalic glass, Proc. 10th Intern. Sci. Confer. AMME'2001, Gliwice-Kraków-Zakopane, 383-386.
  • [26] R. Nowosielski, S. Griner, Attenuation of electromagnetic fields by multi-layer hybrid screens made of metalic glasses with Fe and Co matrix, Proc. 11th Intern. Sci. Confer. AMME'2002, Gliwice-Zakopane, 373-378.
  • [27] R. Nowosielski, S. Griner, Shielding of electromagnetic fields with frequencies up to 1 MHz by ferromagnetic metallic glasses screens, Proc. 3rd Sci. Confer. Materials, Mechanical and Manufacturing Engineering, Gliwice-Wisła, 2005, 387-394.
  • [28] R. Nowosielski, S. Griner, Using of ferromagnetic metallic glasses to shielding electromagnetic fields with frequencies to 1 MHz, Hutnik, (72) 6, 2005, 338-345 (in Polish).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS5-0018-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.